30. Nov 2021 | Application Areas
Cathodic protection performance of zinc-rich epoxy coatings

Graphene has been proved to benefit the corrosion protection of zinc-rich epoxy coatings (ZREs) in 3.5 wt% NaCl solution. However, galvanic corrosion between graphene and zinc powders and its influence on the cathodic protection is widely unknown. In a new paper, ZREs with different graphene contents were prepared, and open-circuit potential and electrochemical impedance spectroscopy techniques were employed to evaluate the cathodic protection of the coatings. To further investigate the influence mechanism of graphene content on ZRE, the porosity of the coatings was measured with mercury intrusion porosimetry, and the corrosion rate of zinc was measured with the H2 evolution technique.
Prolonged cathodic protection
The results from these experiments revealed that the graphene content exhibits an optimum of 0.3 wt%. With a graphene content lower than 0.3 wt%, the porosity of the coating decreases with increasing graphene content, which will decrease the corrosion rate of zinc and prolong the cathodic protection duration of the coating. With a graphene content higher than 0.3 wt%, the galvanic corrosion between graphene and zinc powders increases the corrosion rate of zinc, leading to a shortened cathodic protection duration.
The study has been published in Progress in Organic Coatings, Volume 161, December 2021.

Subscriptions
European Coatings Journal
European Coatings Journal is Europe’s leading monthly journal for the coatings industry:
- Trendsetting industry news
- Cutting-edge technical papers
- Exclusive market insight
Manufacturers and suppliers, associations and institutes use European Coatings Journal as their preferred source of information for the professional, more practical aspects of technology.
There was an error while sending your comment. Please try again.
Your comment was too long. There are a maximum of 2048 symbols allowed!