European Coatings Handbook

Thomas Brock, Michael Groteklaes, Peter Mischke

1 Introduction
1.1 Historical perspective
1.2 The economic importance of paints and coatings
1.3 Classification and material structure of coatings
1.4 Technology of paints and coatings (“Coating technology”)

2 Raw materials for coatings
2.1 Film formers
2.1.1 General polymer science
2.1.1.1 Basic concepts
2.1.1.2 Degree of polymerisation, molecular weight, molecular weight distribution
2.1.1.3 Econdary and aggregate structures of polymers
2.1.1.4 Crosslinked polymers
2.1.1.5 General information about polymer solutions
2.1.1.6 Solubility and solubility parameters
2.1.1.7 Incompatibilities
2.1.1.8 Viscosity of polymer solutions
2.1.1.9 Acqueous systems
2.1.1.10 Mechanical behaviour of polymers - viscoelasticity
2.1.1.11 Measuring viscoelasticity
2.1.1.12 Temperature dependency of polymer behaviour, glass transition temperature
2.1.2 Natural film ormers (natural substances)
2.1.3 Modified natural substances
2.1.4 Synthetic film ormers
2.2 Solvents
2.2.1 Classification and definition
2.2.2 Characterisation of solvents
2.2.2.1 Hydrogen bridge linkage parameter
2.2.2.2 Solvents with weak hydrogen bridge linkage
2.2.2.3 Solvents with moderately strong hydrogen bridge linkage
2.2.2.4 Solvents with strong hydrogen bridge linkage
2.2.3 Properties
2.2.3.1 Volatility
2.2.3.2 Polarity
2.2.3.3 Surface tension
2.2.3.4 Density
2.2.3.5 Viscosity
2.2.3.6 Other physical properties
2.2.3.7 Physiological properties
2.2.4 Solvents in coating materials
2.2.4.1 Influences of solvents on the properties of coatings and coating systems
2.2.4.2 Solvents in low-solids and medium-solids coatings
2.2.4.3 Solvents in high-solids coatings
2.2.4.4 Solvents in water-borne coatings
2.3 Pigments and fillers
2.3.1 Definitions and classification of pigments
2.3.2 Physical principles
2.3.2.1 Pigment morphology
<table>
<thead>
<tr>
<th>2.3.2.2</th>
<th>Appearance of pigments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.2.3</td>
<td>Interactions between pigment and surrounding medium</td>
</tr>
<tr>
<td>2.3.3</td>
<td>White pigments</td>
</tr>
<tr>
<td>2.3.3.1</td>
<td>Titanium dioxide pigments</td>
</tr>
<tr>
<td>2.3.3.2</td>
<td>Other white pigments</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Black pigments</td>
</tr>
<tr>
<td>2.3.4.1</td>
<td>Classification</td>
</tr>
<tr>
<td>2.3.4.2</td>
<td>Pigment blacks</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Inorganic coloured pigments</td>
</tr>
<tr>
<td>2.3.5.1</td>
<td>General properties</td>
</tr>
<tr>
<td>2.3.5.2</td>
<td>Oxide and oxide-hydroxide pigments</td>
</tr>
<tr>
<td>2.3.5.3</td>
<td>Cadmium pigments</td>
</tr>
<tr>
<td>2.3.5.4</td>
<td>Chromate pigments</td>
</tr>
<tr>
<td>2.3.5.5</td>
<td>Bismuth vanadate pigments</td>
</tr>
<tr>
<td>2.3.5.6</td>
<td>Iron-blue pigments</td>
</tr>
<tr>
<td>2.3.5.7</td>
<td>Ultramarine pigments</td>
</tr>
<tr>
<td>2.3.6</td>
<td>Organic coloured pigments</td>
</tr>
<tr>
<td>2.3.6.1</td>
<td>General properties</td>
</tr>
<tr>
<td>2.3.6.2</td>
<td>Classification of organic pigments</td>
</tr>
<tr>
<td>2.3.6.3</td>
<td>Optical properties of organic pigments</td>
</tr>
<tr>
<td>2.3.6.4</td>
<td>Fields of application for organic pigments</td>
</tr>
<tr>
<td>2.3.7</td>
<td>Lustre pigments</td>
</tr>
<tr>
<td>2.3.7.1</td>
<td>Metallic pigments</td>
</tr>
<tr>
<td>2.3.7.2</td>
<td>Pearlescent and iridescent pigments</td>
</tr>
<tr>
<td>2.3.7.3</td>
<td>Incorporating special effect pigments into coatings</td>
</tr>
<tr>
<td>2.3.7.4</td>
<td>Formation of the special effect</td>
</tr>
<tr>
<td>2.3.8</td>
<td>Functional pigments</td>
</tr>
<tr>
<td>2.3.8.1</td>
<td>Anti-corrosive pigments</td>
</tr>
<tr>
<td>2.3.8.2</td>
<td>Conductive pigments</td>
</tr>
<tr>
<td>2.3.9</td>
<td>Fillers</td>
</tr>
<tr>
<td>2.3.9.1</td>
<td>Definition and classification of fillers</td>
</tr>
<tr>
<td>2.3.9.2</td>
<td>Manufacture of fillers</td>
</tr>
<tr>
<td>2.3.9.3</td>
<td>Some commonly used fillers</td>
</tr>
<tr>
<td>2.3.9.4</td>
<td>Nanoparticles</td>
</tr>
<tr>
<td>2.3.10</td>
<td>Dyes</td>
</tr>
<tr>
<td>2.4</td>
<td>Additives</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Classification and definiti</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Interface-active additives</td>
</tr>
<tr>
<td>2.4.2.1</td>
<td>Defoaming and deaerating agents</td>
</tr>
<tr>
<td>2.4.2.2</td>
<td>Surface-active additives</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Rheological additives</td>
</tr>
<tr>
<td>2.4.3.1</td>
<td>General introduction</td>
</tr>
<tr>
<td>2.4.3.2</td>
<td>Thickeners</td>
</tr>
<tr>
<td>2.4.3.3</td>
<td>Thixotropic agents</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Light stabilisers</td>
</tr>
<tr>
<td>2.4.5</td>
<td>Biocides</td>
</tr>
<tr>
<td>2.4.6</td>
<td>Wetting and dispersing agents</td>
</tr>
<tr>
<td>2.4.7</td>
<td>Catalysts and driers</td>
</tr>
<tr>
<td>2.4.8</td>
<td>Flatting agents</td>
</tr>
</tbody>
</table>

3 Coating systems, formulation, film-forming

3.1 Composition of coating materials
3.2 Basic formulating parameters
3.3 Pigment volume concentration and film properties
3.4 Solvent-based coating materials
3.4.1 Low-solids and medium-solids systems
3.4.2 High-solids systems
3.5 Aqueous coating materials
3.5.1 Water-soluble and emulsifiable systems (water-borne coatings)
3.5.2 Emulsion paints
3.6 Radically-curing coating materials
3.7 Coating powders
3.7.1 Film formers
3.7.2 Additives
3.7.3 Pigments
3.8 Inorganic coating materials
3.8.1 Water glass paints (silicate paints)
3.8.2 Alkyl silicate paints
3.9 Formulating the mill base
3.9.1 General introduction
3.9.2 High-solids systems
3.9.3 Aqueous systems
3.10 Film-forming
3.10.1 General introduction
3.10.2 Physically drying
3.10.2.1 Drying of dissolved binders
3.10.2.2 Drying of primary dispersions
3.10.2.3 Drying of polyurethane dispersions
3.10.3 Curing (crosslinking) of liquid coating materials
3.10.3.1 General principles
3.10.3.2 High-solids
3.10.3.3 Crosslinking of waterborne film ormers
3.10.3.4 Radiation curing
3.10.4 Curing (crosslinking) of powder coatings

4 Manufacture of paints and coatings
4.1 Preliminary comment
4.2 General introduction to the manufacture of paints and coatings-
layout of a coating
4.3 Process stages in the manufacture of coatings
4.4 Production “from scratch” and from pastes - formulation example
4.5 Configuration of equipment for the manufacture of coatings
4.6 Method of manufacture of coating powders
4.7 Further information about mixing and dissolving
4.8 Kneading
4.9 Dispersion, dispersing units
4.9.1 General introduction to dispersion
4.9.2 Stress mechanisms during dispersion
4.9.3 Dispersion using agitators
4.9.4 Dispersion using triple roll mills
4.9.5 Dispersion using attrition mills
4.9.5.1 Dispersion mechanism in the presence of grinding media
4.9.5.2 Design and operating parameters for attrition mills
4.9.5.3 Residence time distribution in an attrition mill
4.9.5.4 Continuous and circulating processes
4.9.6 Dispersion in the extruder in the manufacture of coating powders
4.10 Filtration
4.11 Further information about the manufacture of water-borne paints and coatings
5 Substrates and pretreatment
5.1 General introduction
5.2 Principles of adhesion
5.3 Metal substrates
5.3.1 Metals and their surfaces
5.3.2 The most important metal substrates
5.3.2.1 Steel
5.3.2.2 Zinc, galvanised steel
5.3.2.3 Aluminium
5.3.2.4 Other metal materials
5.3.3 Removal of adherent coatings
5.3.3.1 Mechanical processes, abrasive blasting
5.3.3.2 Flame cleaning
5.3.3.3 Pickling
5.3.4 Cleaning, degreasing
5.3.5 Manual preparation of metal substrates
5.4 Plastic substrates
5.4.1 Plastics, plastic surfaces and their coatability
5.4.2 Pretreatment of plastics
5.5 Wood and wood products as substrates
5.5.1 Wood
5.5.2 Wood products
5.5.3 Pretreatment of wood and wood products
5.5.3.1 Facing and smoothing
5.5.3.2 Notes on the protection of wood
5.6 Mineral substrates
5.6.1 Composition and properties
5.6.2 Pretreatment of mineral substrates

6 Application and drying
6.1 Methods of application and criteria for use
6.2 Manual application by brushing, rolling, trowelling, wiping
6.3 Curtain coating
6.4 Roller coating
6.5 Dipping, flow coating and related processes
6.6 Electrodeposition coating
6.6.1 Principles of electrochemistry
6.6.2 Plant engineering and bath control
6.6.3 Developmental trends and fields of application
6.7 Spray application processes
6.7.1 Atomisation methods without electrostatic charging
6.7.1.1 Pneumatic atomisation
6.7.1.2 Hydraulic (airless) atomisation
6.7.1.3 Recent process variants
6.7.2 Electrostatic atomisation
6.7.3 Rapid-rotation atomisation
6.7.4 Film-forming after spray application
6.7.5 Two-component plant engineering for spray application
6.7.6 Range of applications
6.8 Powder coating
6.8.1 Powder sintering processes
6.8.2 Electrostatic processes
6.9 Spray techniques
6.9.1 Booth ventilation techniques
6.9.2 Waste air purification
6.9.3 Supply systems
6.9.4 Automated coating processes
6.9.5 Conveyor systems
6.10 Drying installations
6.10.1 Stoving conditions
6.10.2 Overview of drying processes
6.10.3 Circulating air (convection) drying processes
6.10.4 Infra-red drying (IR radiation)
6.10.5 Other radiation-curing processes ("chemical radiation drying")
6.10.6 Electrical drying processes

7 Painting and coating processes
7.1 Paints and coatings: market and fields of application
7.2 Automotive assembly line coating (automotive primary finishing, OEM
7.3 Automotive refinishing coating
7.4 Industrial plastics coating systems
7.5 Painting of rail vehicles
7.6 Coil coating
7.7 Electrical insulation systems
7.8 Other metal coating systems
7.9 Coating of wood and wood-based materials
7.10 Building protection / coating of mineral substrates
7.11 Separating, preparing and recycling paint and coating residues
7.12 Removal of coatings
7.13 Quality management, process safety and quality assurance

8 Test methods and measuring techniques
8.1 Rheology and rheometry
8.1.1 Rheological principles
8.1.2 Practical relevance of viscosity behaviour
8.1.3 Measuring flow behaviour
8.1.4 Viscoelasticity
8.2 Characteristics of solvents and liquid products
8.2.1 Composition and purity of liquids
8.2.2 Safety data
8.2.3 Application-related data
8.3 Analytical values for solids
8.4 Testing of liquid paints and coatings
8.4.1 Optical properties
8.4.2 Emissions
8.4.3 Film-forming, flow and crosslinking
8.4.4 Ring circuit stability
8.5 Specific tests for coating powders
8.6 Features of coatings after application
8.6.1 Film thickness measurement
8.6.2 Optical film properties, colour and colorimetry
8.6.3 Mechanical engineering film properties
8.6.4 Light stability and weather resistance
8.7 Damage to coatings and coating systems
9 Environmental protection and safety at work
9.1 Air pollution control
9.2 Water pollution control
9.3 Waste legislation and waste management
9.4 Safe handling of paints and coatings
9.5 Transportation
9.6 REACH (Registration, Evaluation, Authorisation of Chemicals)
9.7 Eco-audits: information and limits

Authors

Index

Appendix: nomenclature