Formulating Adhesives and Sealants

Bodo Müller, Walter Rath

Part I General basics

1 Introduction
 1.1 Definitions
 1.2 Setting of adhesives and sealants
 1.3 Commercial importance
 1.4 References

2 Adhesion
 2.1 Wetting of substrates
 2.2 Adhesion forces and mechanisms
 2.3 Adhesion promoters/primers
 2.3.1 Silane adhesion promoters
 2.3.2 Thin, adhesive polymer layers
 2.3.2.1 Polyacrylic acids
 2.3.2.2 Phenolic resins
 2.4 References

3 Classification of adhesives and sealants

Part II Adhesives

1 Physically setting adhesives
 1.1 Solvent-based adhesives
 1.1.1 Basic principles
 1.1.1.1 Polymers in solution
 1.1.1.2 Manufacturing and formulation
 1.1.1.3 Application
 1.1.2 Chemistry of solvent-based adhesives
 1.1.2.1 Polyurethanes (PUR or PU)
 1.1.2.2 Polychloroprenes
 1.1.2.3 Nitrile rubbers
 1.1.2.4 Polyacrylates
 1.1.2.5 Polyvinyl chloride
 1.1.2.6 Polyvinyl acetate
 1.2 Water-based adhesives
 1.2.1 Basic principles sensitive
 1.2.1.1 Dispersions - theory and stabilisation
 1.2.1.2 Formulation of water-based dispersion adhesives
 1.2.1.3 Application of water-based dispersion adhesives
 1.2.2 Chemistry of water-based dispersion adhesives
 1.2.2.1 Polyurethanes (PUR or PU)
 1.2.2.2 Polychloroprenes
 1.2.2.3 Polyacrylates
 1.2.2.4 Polyvinyl acetate and derivatives
 1.3 Hot-melt adhesives
 1.3.1 Basic principles
 1.3.1.1 Composition and setting process
 1.3.1.2 Application
1.3.2 Chemistry and formulation of hot-melts
1.3.2.1 Polyolefins and copolymers
1.3.2.2 Polyesters
1.3.2.3 Polyamides
1.3.2.4 Block copolymers based on polystyrene
1.3.2.5 Acrylates
1.3.2.6 Specialty products

2 Reactive adhesives
2.1 Basic principles
2.1.1 Resins
2.1.2 Fields of application
2.1.3 Components and methods of curing
2.1.4 Toxicology
2.2 Polyaddition adhesives
2.2.1 Polyurethanes
2.2.1.1 Basic principles
2.2.1.2 Structure/property relationships
2.2.1.3 Stoichiometric considerations
2.2.1.4 Formulation of reactive PUR adhesives
2.2.1.4.1 2-component PUR adhesives
2.2.1.4.2 Moisture-curing, 1-component PUR adhesives
2.2.1.4.3 Heat-curing, 1-component PUR adhesives
2.2.2 Epoxies
2.2.2.1 Basic principles
2.2.2.2 Structure/property relationships
2.2.2.3 Stoichiometric considerations
2.2.2.4 Formulation of reactive epoxy adhesives
2.2.2.4.1 2-component epoxy adhesives
2.2.2.4.2 Heat-curing, 1-component epoxy adhesives
2.2.2.4.3 UV curing, 1-component epoxy adhesives
2.2.2.5 Trends
2.3 Polymerisation adhesives
2.3.1 Acrylates
2.3.1.1 Basic principles
2.3.1.2 Structure/property relationships
2.3.1.3 Formulations
2.3.1.3.1 2-component acrylic adhesives
2.3.1.3.2 Anaerobic acrylic adhesives
2.3.1.3.3 Radiation-curing acrylic adhesives
2.3.2 Cyanoacrylates
2.3.2.1 Basic principles
2.3.2.2 Structure/property relationships
2.3.2.3 Formulation
2.4 Polycondensation adhesives
2.4.1 Phenolic resins
2.4.1.1 Basic principles
2.4.1.2 Structure/property relationships
2.4.1.3 Formulations
2.5 Curing of hot-melts
2.5.1 Concepts
2.5.2 Moisture-curing PUR hot-melts
2.5.2.1 Basic principles
2.5.2.2 Synthesis and formulation
2.5.3 Moisture-curing POR hot-melts (polyolefin reactive hot-melts)
2.5.3.1 Basic principles and structure
2.5.3.2 Formulation
2.5.4 Heat-curing epoxy hot-melts
2.5.4.1 Basic principles and structure
2.5.4.2 Formulations
2.5.5 Radiation-curing acrylic hot-melts
2.6 Literature

3 Pressure sensitive adhesives
3.1 Basic principles
3.1.1 Characterisation
3.1.2 Structure/property relationships
3.1.3 Application
3.2 Solvent-borne pressure sensitive adhesives
3.2.1 Natural rubber
3.2.2 Acrylics
3.3 Latexes (aqueous polymer dispersions)
3.4 Hot-melt pressure sensitive adhesives
3.4.1 Styrene block copolymers
3.4.2 Ethylene vinyl acetates (EVA)
3.4.3 Atactic polypropylene
3.5 UV curing systems
3.6 References

Part III Sealants and adhesive-sealants

1 Adhesive-sealants in the automotive industry
1.1 Basic principles
1.2 Thermosetting adhesive-sealants in automotive body-in-white construction
1.2.1 Plastisols
1.2.2 Rubbers
1.3 Windscreen bonding with adhesive-sealants
1.3.1 Moisture-curing, 1-component polyurethanes
1.3.2 Reaction-curing, 2-component polyurethanes
1.3.3 Hot-applied, 1-component polyurethanes
1.3.4 Primers
1.4 References

2 Sealants for multi-pane insulating glass
2.1 Basic principles
2.2 Insulating glass sealants
2.2.1 Primary seal (butyl rubber)
2.2.2 Secondary seal
2.2.2.1 2-component polyurethanes
2.2.2.2 2-component polysulphides
2.2.2.3 Hot-applied thermoplastic elastomers (1-component)
2.2.2.4 System overview
2.3 References

3 Construction sealants
3.1 Basic principles
3.2 Classification of construction sealants
3.2.1 Polyurethanes
3.2.1.1 Moisture-curing, 1-component polyurethane systems
3.2.1.2 Curing of 2-component polyurethane systems
3.2.2 Polysulphides
3.2.3 Silicones
3.2.4 Silane-modified sealants
3.2.5 Polycrylate latexes
3.2.6 Primers
3.3 References

Part IV Design and testing of adhesive joints

1 Basic principles
1.1 System view
1.2 Cohesion of adhesives, and viscoelasticity
1.3 Thermomechanical properties

2 Stress analysis of adhesive joints
2.1 Preliminary note
2.2 Mechanical loads
2.2.1 Static loads
2.2.1.1 Analysis of shear deformation
2.2.1.2 Analysis of peel deformation
2.2.2 Dynamic loads
2.2.2.1 Influence of the rate of deformation
2.2.2.2 Periodic loads
2.3 Analysis of ageing influences
2.3.1 Thermal ageing
2.3.1.1 Influence of temperature on shear and peel strength
2.3.1.2 Coefficients of thermal expansion
2.3.1.3 Phase transitions
2.3.1.4 Degradation of organic polymers
2.3.2 Analysis of exposure to different fluids
2.3.2.1 Swelling
2.3.2.2 Hydrolysis
2.3.2.3 Sub-surface migration
2.4 Anisotropic effects

3 Rules

4 Testing of adhesive joints
4.1 Basic principles
4.1.1 Preliminary notes
4.1.2 Preliminary tests
4.1.2.1 Hand strength
4.1.2.2 Bead test
4.1.2.3 Impact strength test
4.1.2.4 Water resistance test
4.1.3 Evaluation of failure mode
4.1.4 Standardised and defined application tests
4.2 Mechanical tests
4.2.1 Static tests
4.2.1.1 Tensile shear strength (TSS)
4.2.1.2 Tensile strength
4.2.1.3 Peel strength
4.2.2 Tests of static long-term load
4.2.2.1 Creep resistance
4.2.2.2 Wedge test
4.2.3 Dynamic tests
4.2.3.1 Impact strength tests
4.2.3.2 Fatigue resistance test
4.3 Durability and ageing tests
4.3.1 Testing the influence of temperature
4.3.1.1 Heat-resistance tests
4.3.1.2 Temperature dependence of bond strength
4.3.2 Test of humidity resistance
4.3.2.1 Water immersion test
4.3.2.2 Boiling water test
4.3.2.3 Condensed water test
4.3.2.4 Cataplasma test
4.3.3 Combined and variable influences
4.3.3.1 Cyclic tests
4.3.3.2 VDA alternating cycles test
4.3.3.3 Specific environments
4.3.3.4 Salt spray tests
4.3.3.5 Stress corrosion
4.3.3.6 Light
4.3.3.7 Testing for volatile components
4.4 Pressure sensitive adhesives
4.4.1 Tack
4.4.2 Peel strength
4.4.3 Creep resistance
4.5 Non-destructive test methods

5 References