High Solid Binders

Mircea Manea

1 General considerations
1.1 Introduction
1.2 Coatings
1.3 Quick guide to coatings
1.4 Coatings global market

2 Environmental awareness
2.1 Environmental concerns
2.2 VOC regulations
2.2.1 Estimation of VOC emissions
2.2.2 Categories of industrial surface coatings operation
2.2.2.1 Selected USA coating regulations by region
2.2.2.2 Environmental targets in Europe

3 General concepts in coatings
3.1 Basics in coatings technology
3.1.1 Film formation
3.1.2 Molecular weight
3.1.2.1 Molecular weight
3.1.2.2 Molecular weight analysis methods
3.1.3 Polymer structure
3.1.3.1 Crystalline and amorphous polymers
3.1.3.2 Polymer tacticity
3.1.3.3 Phase transitions in polymer
3.1.4 Viscosity
3.2 Solvents
3.2.1 Solvents for specific resin types

4 New technologies
4.1 Emerging technologies
4.1.1 Powder coatings definitions
4.1.1.1 Powder coatings
4.1.1.2 Radiation curing powder coating
4.1.1.3 Overview of chemistry of powder coatings versus performance
4.1.2 Radiation curing coatings
4.1.3 Water-borne coatings
4.1.4 Comparison between emerging technologies

5 Polymers and resins
5.1 Alkyd resins
5.1.1 Property-property relationship in alkyd resins
5.1.1.1 Drying characteristics
5.1.1.2 Raw materials in alkyd resins formulation
5.1.1.4 Thumb rule for performance estimation
5.1.2 Alkyd manufacturing
5.1.2.1 Alcoholysis process
5.1.2.2 Acidolysis process
5.1.3 Modification of alkyds
5.1.3.1 Vinylated alkyds
5.1.3.2 Combination of alkyds with silicon backbones
5.1.3.3 Urethane alkyds
5.1.3.4 Other alkyd modifications
5.1.4 Cross-linking of alkyds
5.1.4.1 Oxidative cross-linking of alkyds
5.2 Polyesters
5.2.1 Polyester synthesis
5.2.2 Polyester cross-linking
5.3 Polyethers
5.3.1 Polyether synthesis
5.3.2 Aromatic polyethers
5.3.3 Aliphatic polyethers
5.3.3.1 Polyethylene oxide
5.3.3.2 Polypropylene oxide
5.3.3.3 Polytetrahydrofuran and polyoxetane
5.4 Amino resins
5.4.1 Synthesis of amino resins
5.4.2 Methylol derivatives reactions
5.5 Epoxy resins
5.5.1 Reactions of the epoxy group
5.6 Acrylic resins
5.6.1 Manufacturing of acrylic resins
5.6.3 Thermoplastic acrylic resins
5.6.4 Thermosetting acrylic resins
5.6.4.1 Hydroxyl functional acrylic resins
5.6.4.2 Acrylic resins having miscellaneous functionalities
5.7 Polyurethane resins
5.7.1 Chemical reactions of the isocyanate group
5.7.1.1 Insertion reactions
5.7.1.2 Cycloaddition reactions
5.7.1.3 Addition polymers
5.7.2 Catalysts
5.7.3 Water-borne polyurethane systems

6 High solids approach
6.1 Definitions of high solid coatings
6.2 Drivers
6.3 High solid: publication statistics
6.4 Coatings with high non-volatile content
6.4.1 Solventless epoxy coatings
6.4.1.1 Reactive solvents
6.4.1.2 Curing agents that reduce the viscosity of the formulation
6.4.1.3 Inert solvents and plasticizers
6.4.2 Radiation curing coatings
6.4.3 Solventless or high solids systems based on bismaleimide

7 High solids as modern binder systems
7.1 Film formation in high solid systems
7.2 High solid binders design parameters
7.2.1 Polymer architecture and free volume
7.2.2 Molecular weight and molecular weight distribution
7.2.3 Presence of colloidal particles
7.2.4 Presence of hydrogen bonds
7.2.5 Reactive groups with plasticizing effect
7.2.6 Choice of monomers and building blocks
7.2.7 Two steps cross-linking and new chemistries
7.2.8 Solvents
7.2.9 Reactive solvents
7.2.10 Pigments and additives
7.3 Free volume

8 High solids strategies
8.1 Polymer architecture
8.2 Molecular weight and molecular weight distribution
8.2.1 Alkyd resins
8.2.2 Polyesters
8.2.3 Polyethers
8.2.4 Epoxy resins
8.2.5 Acrylic resins
8.2.6 Polyurethanes
8.2.7 Amino resins
8.3 Presence of colloidal particles
8.3.1 Alkyd resins
8.3.2 Polyesters
8.3.3 Acrylic resins
8.3.4 Polyurethanes
8.3.5 Amino resins
8.4 Hydrogen bond control
8.4.1 Alkyd resins
8.4.2 Polyester resins
8.4.3 Polyethers
8.4.4 Epoxy resins
8.4.5 Acrylic resins
8.4.6 Polyurethane resins
8.4.7 Amino resins
8.5 Reactive groups with plasticizing effect
8.5.1 Alkyd resins
8.5.2 Polyesters
8.5.3 Acrylic resins
8.5.4 Epoxy resins
8.5.5 Polyurethanes
8.6 Choice of monomers in binder formulations
8.6.1 Alkyd resins
8.6.2 Polyesters
8.6.3 Epoxy resins
8.6.4 Acrylic resins
8.6.5 Polyurethanes
8.6.6 Amino resins
8.6.7 Miscellaneous
8.7 Reactive diluents
8.7.1 Alkyd resins
8.7.2 Polyesters
8.7.3 Polyethers
8.7.4 Epoxy resins
8.7.5 Acrylic resins
8.7.6 Polyurethanes
8.7.7 Amino resins
8.8 Two steps cross-linking and new chemistries
9 Examples of high solid formulations
9.1 Polymer architecture and free volume
9.2 Molecular weight
9.2.1 Acrylic hydroxyl functional binder for 2K polyurethane coatings
9.2.2 Two component epoxy ester
9.3 Hydrogen bond management and groups with plasticizing effect
9.4 Monomer choice

Conclusions

Literature

Abbreviations