Special Effect Pigments

Gehard Pfaff

1 History of effect pigments
2 Optical principles, manufacture, properties and types of special effect pigments
 2.1 Optical principles
 2.1.1 Reflection and refraction at one and at several interfaces
 2.1.2 Pearl luster and interference effects
 2.2 Natural pearl luster pigments
 2.3 Basic lead carbonate
 2.4 Bismuth oxychloride
 2.5 Micaceous iron oxide
 2.6 Titanium dioxide flakes
 2.7 Flaked organic effect pigments
 2.8 Metal oxide mica pigments
 2.8.1 Titanium dioxide mica pigments
 2.8.2 Iron(III) oxide mica pigments
 2.8.3 Combination pigments
 2.8.4 Mica pigments with multilayers
 2.8.5 Pigments for outdoor applications
 2.8.6 Mica pigments for new optical effects
 2.8.6.1 Silver-gray and black pigments
 2.8.6.2 Mica pigments without pearl luster: “Transparent Colors”
 2.8.6.3 Mica pigments with low pearl luster: “Low Luster Pigments”
 2.8.7 Functional metal oxide mica pigments
 2.8.7.1 Light colored, electrically conductive pigments
 2.8.7.2 Magnetic pigments
 2.8.7.3 Pigments for the laser marking of plastics
 2.8.7.4 Solar heat-reflecting pigments
 2.9 Effect pigments based on alumina flakes
 2.10 Effect pigments based on borosilicate flakes
 2.11 Effect pigments based on silicon dioxide flakes
 2.12 Effect pigments based on iron oxide flakes
 2.13 Effect pigments consisting of metal oxide-coated metal platelets
 2.14 Multilayer pigments with a Fabry-Perot structure manufactured using the PVD-method
 2.15 Effect pigments based on liquid-crystal polymers (cholesteric effect pigments)
 2.16 Structured effect pigments
 2.16.1 Holographic pigments
 2.16.2 Diffractive pigments
3 Special effect pigments in paints
 3.1 General comments on the use, application and processing
 3.2 Technology comparison for the coloring of plastics and paints
 3.3 Incorporation, dispersion and stabilization
 3.4 Sedimentation
 3.5 Surface treated effect pigments in paints
 3.6 Particle geometry and orientation
 3.7 Consequences of the application
 3.8 Color and effect creation
Special effect pigments in plastics

4.1 General information on the application of pearl luster pigments in plastics
4.1.1 Transparency of the plastic matrix
4.1.2 Dispersion of the pearl luster pigments
4.1.3 Orientation of the pigment platelets
4.1.4 Applications for pearl luster pigments
4.2 Pearl luster pigments in duromers
4.2.1 Unsaturated polyester casting resins
4.2.2 Polymethyl methacrylat casting resins
4.2.3 Orientation methods for PMMA cast resin sheets
4.2.4 Laminating resins
4.2.5 Compression molding compounds
4.3 Pearl luster pigments in thermoplastics
4.3.1 Effect designing
4.3.2 Pigment selection and pigment concentration
4.3.3 Marble effects
4.3.4 Application procedures for pigments in thermoplastics
4.3.5 Pigmentation of thermoplastics with pigment preparations
4.3.6 Special cases of pearl luster pigmentation
4.3.7 Processing pearl luster molding materials and recycling
4.4 Pearl luster pigments for laser marking
4.4.1 Functionality of laser-sensitive pearl luster pigments
4.4.2 Laser marking methods
4.4.3 Laser welding

Special effect pigments in printing inks

5.1 Importance of pearl luster pigments in the printing industry
5.1.1 Design effects
5.1.2 Environmental protection
5.2 Application areas
5.2.1 Printing onto textile fabrics
5.2.2 Wallpapers and furniture facings
5.2.3 Fine papers and carton board
5.2.4 Packaging
5.3 Applicable printing methods
5.3.1 Pearl luster pigments in gravure printing
5.3.2 Pearl luster pigments in flexographic printing
5.3.3 Pearl luster pigments in screen printing
5.3.4 Pearl luster pigments in wet offset printing
5.3.5 Pearl luster pigments in other lithographic offset printing methods
5.3.6 Pearl luster pigments in offset coating
5.3.7 Pearl luster pigments in the bronzing process
5.3.8 Pearl luster pigments in other coating processes
5.4 Evaluation of the print results
5.4.1 Print down and print run characteristics
5.4.2 Coloristics

Special effect pigments in cosmetics

Colorimetry of special effect pigments

7.1 General information
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2</td>
<td>Practical color measurement of effect pigments</td>
</tr>
<tr>
<td>7.3</td>
<td>Color measurement systems for effect pigments</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Angle-dependent color measurement - a historical review</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Angle-dependent color measurement - a general review</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Angle-dependent color measurement - new developments</td>
</tr>
<tr>
<td>7.4</td>
<td>Possible applications of colorimetric measurement for effect pigments</td>
</tr>
<tr>
<td>8</td>
<td>Impact of special effect pigments on humans and the environment</td>
</tr>
<tr>
<td>8.1</td>
<td>Proof of physiological compatibility</td>
</tr>
<tr>
<td>8.2</td>
<td>Regulatory approval of metal oxide mica pigments</td>
</tr>
</tbody>
</table>

Acknowledgement

Authors

Index