Polyurethanes

Ulrich Meier-Westhues

1 Introduction
 1.1 Historical aspects
 1.2 Definition of scope

2 Economic aspects and market analysis
 2.1 Coatings
 2.2 Adhesives and sealants

3 Chemical principles
 3.1 Di- and triisocyanates
 3.2 Isocyanate reactions
 3.3 Polyisocyanates
 3.4 Prepolymers
 3.5 Blocked polyisocyanates
 3.6 Hydrophilically modified polyisocyanates
 3.7 Coreactants
 3.7.1 Polyacrylate polyols
 3.7.2 Polyester polyols
 3.7.3 Polyether polyols
 3.7.4 Polycarbonate polyols
 3.7.5 Polycaprolactone polyols
 3.7.6 Polyurethane polyols
 3.7.7 Polyamines
 3.8 Aqueous dispersions
 3.8.1 Polyurethane dispersions
 3.8.2 Polyacrylate dispersions
 3.9 Urethane acrylates

4 Coating technology principles
 4.1 Aspects of one- and two-component coating technology
 4.2 Solventborne and solvent-free systems
 4.3 Waterborne systems
 4.4 Process technology
 4.4.1 Processing of one-component polyurethane coatings
 4.4.2 Processing of two-component polyurethane coatings
 4.5 Polyurethane powder coatings
 4.6 Radiation curing
 4.6.1 Technology and coating formulation
 4.6.2 Binders for radiation curing
 4.6.3 Urethane acrylates for UV (mono-cure) and electron beam curing applications
 4.6.4 Waterborne UV-curing polyurethane coatings
 4.6.5 Urethane acrylates for UV powder applications
 4.6.6 Isocyanato urethane acrylates for dual-cure technology
 4.7 Nanotechnology in polyurethane coatings

5 Applications for polyurethane coatings
 5.1 Wood coating
 5.1.1 Requirements of wood and furniture coatings
 5.1.2 Polyisocyanates for wood and furniture coatings
5.1.3 Solventborne two-component polyurethane coatings
5.1.4 Moisture-curing coatings
5.1.5 Urethane-modified oil and alkyd resin coatings
5.1.6 Radiation-curing urethane acrylate coatings
5.1.7 Waterborne polyurethane coatings
5.1.8 Waterborne UV-curing one-component polyurethane coatings
5.1.9 Outlook
5.2 Metal coating
5.2.1 General industrial coating
5.2.1.1 Technical aspects of polyurethane coatings
5.2.1.2 Waterborne polyurethane coatings
5.2.2 Coil coating
5.2.3 Can coating
5.2.4 Powder coating
5.2.4.1 Powder coating technology
5.2.4.2 Polyurethane powder coatings
5.2.5 Corrosion protection
5.2.5.1 Technical aspects of polyurethane anti-corrosion coatings
5.2.5.2 Primers
5.2.5.3 Intermediate coats
5.2.5.4 Topcoats
5.2.5.5 Polyurethane/hydrocarbon resin combinations
5.2.5.6 Polyaspartic coatings
5.2.5.7 Pipe coating
5.2.6 Wire coating
5.3 Automotive OEM finishing
5.3.1 Cathodic electrodeposition primers
5.3.2 Seam sealing, underbody coating and sound insulation
5.3.3 Primer surfacers
5.3.4 Basecoats and clearcoats
5.3.5 Outlook
5.4 Automotive refinish and transportation coating
5.4.1 Property profile
5.4.2 Steps in automotive refinishing and transportation coating
5.4.3 Application and characteristic data of two-component polyurethane coatings
5.4.4 Raw material selection
5.4.5 Low emission polyurethane coatings
5.4.5.1 Two-component polyurethane high solid coatings
5.4.5.2 Two-component very high solid polyurethane coatings
5.4.5.3 Waterborne polyurethane coatings
5.4.6 Radiation-curing coatings
5.4.7 Interior coating of large vehicles
5.4.8 Light-stable, thick film coatings
5.5 Plastic coating
5.5.1 Market evaluation
5.5.2 Coating process
5.5.3 Raw material selection
5.5.4 Coating concepts for automotive add-on components
5.5.5 Soft-feel coatings
5.5.6 Industrial plastic coating
5.5.7 UV technology in plastic coating
5.5.8 In-mold coating
5.5.9 Polyurethane gelcoats
5.6 Application on glass
5.6.1 Coatings for glass containers
5.6.2 Glass fiber sizing
5.7 Use on textiles and leather
5.7.1 Textile coating
5.7.2 Polyurethane synthetic leather and microporous coatings
5.7.3 Leather coating
5.8 Coating and finishing of paper and films
5.8.1 Paper manufacturing
5.8.2 Paper coating
5.8.3 The production of decorative coating materials for furniture and interior design
5.8.4 Finishing of technical papers and films
5.9 Construction applications
5.9.1 Floor coatings
5.9.1.1 Technology of polyurethane floor coatings
5.9.1.2 Examples of applications
5.9.2 Wall coatings
5.9.2.1 Coating systems
5.9.2.2 Polyurethane wall coatings
5.9.3 Surface sealing
5.9.3.1 Sealing flat roofs with liquid polyurethane membranes
5.9.3.2 Sealing balconies with polyurethane membranes

6 Polyurethane adhesives
6.1 Introduction
6.2 Classification
6.3 Polyurethane reactive adhesives
6.3.1 Raw materials
6.3.2 Two-component polyurethane reactive adhesives
6.3.3 Moisture-curing one-component reactive adhesives
6.3.3.1 One-component polyurethane systems
6.3.3.2 One-component silane-terminated polyurethanes
6.3.4 Polyurethane laminating adhesives
6.4 Solventborne adhesives based on hydroxyl polyurethanes
6.4.1 Hydroxyl polyurethanes
6.4.2 Isocyanate crosslinkers for solventborne adhesives
6.5 Polyurethane dispersion adhesives
6.5.1 Products
6.5.2 Formulation
6.5.3 Isocyanate crosslinkers for dispersion adhesives
6.5.4 Drying
6.5.5 The principle of heat-activated adhesive bonding
6.5.6 Applications and application technology
6.5.7 Latently reactive polyurethane dispersion adhesives
6.6 Hot-melt adhesives
6.6.1 Non-reactive hydroxyl polyurethane hot-melt adhesives
6.6.2 Reactive polyurethane hot-melt adhesives

7 Polyurethane sealants
7.1 Terms and definitions
7.2 Chemical structure
7.2.1 Isocyanate crosslinking systems
7.2.2 Silane-modified polymers
7.3 Formulation
7.3.1 NCO-reactive one-component polyurethane sealants
7.3.2 Silane-terminated polyurethanes
7.4 Processing

8 New areas of application for polyurethanes

9 Combinatorial material development and high-throughput testing
9.1 Combinatorial material development
9.2 Statistical experimental design and high-throughput analysis in the laboratory
9.3 Blocked isocyanates with a lower baking temperature - an example of combinatorial development

10 Occupational hygiene in the manufacture and processing of polyurethane coatings and adhesives
10.1 Occupational health and safety
10.1.1 Monomeric and polymeric isocyanates
10.1.1.1 Labeling
10.1.1.2 Exposure limits
10.1.1.3 Isocyanate analysis
10.1.2 Coreactants for polyisocyanates
10.1.3 Processing of polyurethane coatings
10.1.3.1 General protective measures
10.1.3.2 Spray application
10.1.3.3 Waterborne one-component and two-component reactive systems
10.1.3.4 Baking urethane resins
10.1.3.5 Special aspects of processing MDI-based products
10.1.4 Disposal of polyisocyanate residues and cleaning of soiled containers
10.2 Consumer protection aspects
10.2.1 Polyurethane coatings and indoor air quality
10.2.2 Do-it-yourself and polyurethanes
10.2.3 Relevant legal provisions covering raw materials for coatings and adhesives in contact with foodstuffs
10.2.4 Polyurethane coatings and drinking water
10.2.5 Behavior of polyurethane coatings in the event of fire

11 Ecology
11.1 Solvent emissions
11.2 Waste products
11.3 Wastewater

12 Sustainable Development

13 General references

Index