Coatings Formulation

Bodo Müller, Ulrich Poth

Part I Basic

1 Introduction
1.1 Preliminary remarks
1.2 Comments on environmental protection
1.3 Paints and coatings as high-tech-products
1.4 Definitions
1.5 Coatings
1.5.1 Solidification of paints
1.5.2 Phase boundaries in coatings
1.6 Adhesion
1.6.1 Wetting of substrates
1.6.2 Adhesion forces and mechanisms
1.6.3 Adhesion promoters/adhesion-promoting layers
1.6.3.1 Silane adhesion promoters
1.6.3.2 Thin polymeric adhesive layers
1.6.4 Corrosion inhibitors, anticorrosive pigments and corrosion protection additives
1.7 References

2 Pigment dispersions
2.1 Fundamentals of disperse systems
2.2 Stabilization of dispersions
2.2.1 Electrostatic stabilization
2.2.2 Steric stabilization
2.3 Wetting and dispersing agents
2.3.1 Dispersing agents
2.3.2 Wetting agents (surfactants)
2.4 Wetting of pigments
2.5 References

3 Paint formulation
3.1 Ratio of binder to solid particles
3.1.1 Pigment/binder ratio and pigment volume concentration
3.1.2 Oil adsorption value
3.2 Influence of pigments on the properties of coatings
3.3 Development of paint formulations
3.4 Multi-coat systems
3.5 References

Part II Solvent-Borne Paints

1 Paints forming films at ambient temperature
1.1 Physically drying paints
1.1.1 Paints based on cellulose nitrate
1.1.1.1 Structure and properties of cellulose nitrate
1.1.1.2 Combination partners for cellulose nitrate
1.1.1.3 Application of cellulose nitrate paints
1.1.2 Physically drying paints based on acrylic resins
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.3</td>
<td>Paints based on rubber modifications</td>
</tr>
<tr>
<td>1.1.3.1</td>
<td>Structure and properties of rubber modifications</td>
</tr>
<tr>
<td>1.1.3.2</td>
<td>Application of rubber modifications</td>
</tr>
<tr>
<td>1.2</td>
<td>Oxidative-cure paints</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Oxidative-cure reactions</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Binders for oxidative curing</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Siccatives and anti-skinning additives</td>
</tr>
<tr>
<td>1.2.4</td>
<td>Oil varnishes</td>
</tr>
<tr>
<td>1.2.5</td>
<td>Alkyd resin paints</td>
</tr>
<tr>
<td>1.2.6</td>
<td>Paints based on epoxy ester resins</td>
</tr>
<tr>
<td>1.3</td>
<td>Two-component systems</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Two-component polyurethane paints</td>
</tr>
<tr>
<td>1.3.1.1</td>
<td>Reactions of isocyanates</td>
</tr>
<tr>
<td>1.3.1.2</td>
<td>Isocyanate crosslinkers (hardener for two-components polyurethanes)</td>
</tr>
<tr>
<td>1.3.1.3</td>
<td>Hydroxyl resins for two-component polyurethane systems</td>
</tr>
<tr>
<td>1.3.1.4</td>
<td>Catalysts and accelerators for two-component polyurethane paints</td>
</tr>
<tr>
<td>1.3.1.5</td>
<td>Development of formulations of two-component polyurethane paints</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Two-components epoxy paints</td>
</tr>
<tr>
<td>1.3.2.1</td>
<td>Base component: epoxy resins</td>
</tr>
<tr>
<td>1.3.2.2</td>
<td>Hardeners: polyamines and derivates</td>
</tr>
<tr>
<td>1.3.2.3</td>
<td>Formulation of two-components epoxy paints</td>
</tr>
<tr>
<td>1.4</td>
<td>References</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Stoving Enamels</td>
</tr>
<tr>
<td>2.1</td>
<td>Definitions</td>
</tr>
<tr>
<td>2.2</td>
<td>Stoving enamels based on amino resins</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Chemical structure of amino resins</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Types and properties of amino resins</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Combination partners for amino resins</td>
</tr>
<tr>
<td>2.2.3.1</td>
<td>Alkyd resins</td>
</tr>
<tr>
<td>2.2.3.3</td>
<td>Saturated polyesters</td>
</tr>
<tr>
<td>2.2.3.4</td>
<td>Acrylic resins crosslinked by amino resins</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Crosslinking reactions</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Catalysis of crosslinking reactions</td>
</tr>
<tr>
<td>2.2.6</td>
<td>Formulation of stoving enamels based on amino resins</td>
</tr>
<tr>
<td>2.3</td>
<td>Stoving enamels based on thermosetting phenolic resins (resols)</td>
</tr>
<tr>
<td>2.4</td>
<td>Stoving enamels based on blocked polyisocyanates</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Structure and properties of blocked polyisocyanates</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Combination partners for blocked polyisocyanates</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Comparison of blocked polyisocyanates and amino resins in stoving enamels</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Formulation of stoving enamels based on blocked polyisocyanates</td>
</tr>
<tr>
<td>2.5</td>
<td>Other solvent-borne stoving enamels</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Self-crosslinking acrylic resins</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Self-crosslinking polyesters</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Reactions between epoxy groups and acid derivatives</td>
</tr>
<tr>
<td>2.5.4</td>
<td>Siloxanes in stoving enamels</td>
</tr>
<tr>
<td>2.6</td>
<td>Fastness to re-coating</td>
</tr>
<tr>
<td>2.7</td>
<td>References</td>
</tr>
</tbody>
</table>

Vincentz Network, Hannover, Germany - www.european-coatings.com - order@vincnetz.net
Part III Water-Borne Paints

1 Solubility and dispersibility of paint resins in water
1.1 Exceptional position of water as paint solvent
1.2 Distributions of polymers in water
1.3 Dispersions and emulsions of paint resins and polymers
1.3.1 Primary dispersions
1.3.2 Emulsions of liquid paint resins
1.3.3 Secondary dispersions
1.3.3.1 Acrylate secondary dispersions
1.3.3.2 Polyurethane secondary dispersions
1.4 Aqueous solutions of paint resins
1.4.1 Water-solubility of paint resins
1.4.2 Neutralizing agents
1.4.3 Cosolvents
1.5 References

2 Water-borne paints and coatings that dry/cure at ambient temperatures
2.1 Physically drying paints
2.1.1 Film formation by primary dispersions
2.1.2 Latex gloss enamels
2.2 Facade coatings
2.2.1 Latex paints
2.2.2 Silicone resin paints
2.2.3 Silicate paints (two-components)
2.2.4 Latex silicate paints (one-component)
2.3 References

3 Water-borne paints that cure at ambient temperatures
3.1 Water-borne paints that cure oxidatively
3.1.1 Water-borne paints based on alkyd resins
3.1.2 Hybrid systems
3.2 Two-component, water-borne systems
3.2.1 Two-component, water-borne polyurethane paints
3.2.2 Water-borne two-components epoxy paints
3.3 References

4 Water-borne stoving enamels
4.1 Guidelines for water-borne stoving enamels
4.2 Water-borne stoving enamels based on amino resins
4.3 Water-borne stoving enamels based on thermosetting phenolic resins
4.4 Electrodeposition paints
4.4.1 Electrodeposition processes
4.4.2 Anionic deposition paints
4.4.3 Cationic electrodeposition paints
4.5 References
Part IV Solvent-free coatings

1 Two-components systems
1.1 Two-components polyurethane coatings
1.2 Two-components epoxy coatings
1.3 Coatings based on unsaturated polyester resins
1.4 References

2 Radiation curing
2.1 Definitions
2.2 UV-curing
2.2.1 Principles of UV curing
2.2.2 UV coating process
2.2.3 UV initiators and sensitizers
2.2.4 Resins for UV coatings
2.2.5 Reactive diluents for UV coatings
2.2.6 Properties and application of UV coatings
2.2.7 Typical UV-coatings
2.3 Electron beam curing
2.4 References

3 Powder coatings
3.1 Development of powder coatings
3.2 Production of powder coating materials and general properties
3.3 Application of powder coatings
3.3.1 Fluid bed sintering
3.3.2 Electrostatic spray application
3.4 Composition of powder coatings and special properties
3.4.1 Thermoplastic powder coatings
3.4.2 Crosslinkable powder coatings
3.4.2.1 Powder coatings from epoxy resins
3.4.2.2 Epoxy resin / polyester hybrid systems
3.4.2.3 Polyester powder coatings
3.4.2.3.1 Polyesters containing carboxyl groups
3.4.2.3.2 Polyesters containing hydroxyl groups
3.4.2.4 Acrylic resin powder coatings
3.4.2.4.1 Structure and production of acrylic resins for powder coatings
3.4.2.4.2 Epoxy acrylic resins
3.4.2.4.3 Acrylic resins containing carboxyl groups
3.4.2.4.4 Acrylic resins containing hydroxyl groups
3.4.2.4.5 Acrylic resins for radiation-curing powder coatings
3.4.3 Future of powder coatings
3.5 References

General Literature

Authors

Index

Buyers’ Guide