New hydrophobically modified acrylic technology to create cellulosics coatings rheology

Pol Storme, Dow Coating Materials, Belgium

European Coatings WEB CONFERENCE
Novel additive developments
April 19, 2012
AGENDA

- Overview of rheology modifiers for emulsion paints
- Thickening mechanisms
- New HASE as cellulose ether alternative
- Conclusions
COMMON RHEOLOGY MODIFIERS FOR EMULSION PAINT

<table>
<thead>
<tr>
<th>CONVENTIONAL</th>
<th>SYNTHEtIC</th>
<th>NATURAL DERIVATIVES</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Alkali Soluble Emulsion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-ASE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Acrylic type</td>
<td></td>
<td>• Cellulose ethers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Other polysaccharides</td>
</tr>
<tr>
<td>THIXOTROPIC ASSOCIATIVE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Hydrophobically modified Alkali Soluble Emulsion (HASE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Non-Ionic Synthetic Associative Thickeners</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Incl. Hydrophobically modified Ethylene oxide Urethane (HEUR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Titanium, Zirconium chelates</td>
<td></td>
<td>• Hydrophobically modified cellulose ethers (HM cellulose ethers)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Clays</td>
</tr>
</tbody>
</table>
Overview of DCM Rheology Modifiers
According to chemistry

• Acrylic thickeners - ACRYSOL™ range
 - Alkali-soluble emulsions (ASE)
 - Hydrophobe modified alkali-soluble emulsions (HASE)

• Urethane thickeners - ACRYSOL™ range
 - Hydrophobically modified Ethylene oxide Urethane (HEUR)

• Cellulosic thickeners
 - Hydroxyethyl cellulose (HEC) – CELLOSIZE™ range
 - Hydroxyethyl Methyl cellulose (HEMC) – WALOCEL™ M range
 - Carboxymethyl cellulose (CMC) - WALOCEL™ C range
Thickener Chemistry of focus

Cellulosic chemistry

Acrylic chemistry
Thickening mechanisms

Associative thickening
- Latex
- Acrylic chemistry:
 - HASE
- Cellulosic chemistry:
 - HM cellulose ethers

Non-associative thickening
- Latex or Pigments
- Thickener
- Acrylic chemistry:
 - ASE
- Cellulosic chemistry:
 - Cellulose ethers (HEC)
Need for cellulosics replacement by a HASE

- Ease of addition via liquid delivery
- Increasing speed of paint production avoiding a powder swelling step
- Avoid viscosity loss via enzyme resistance
- Reduce roller spatter with standard cellulosics
- Formulation cost benefits possible
- Improve supply and availability situation
Development Concept
New HASE as cellulosic ether alternative

• HASE and ASE can each match some cellulosic ether properties

• New HASE technology delivers many of the positive attributes of both HASE and ASE

• Result: Viable alternative to cellulosic ethers
Technical Requirements for cellulosics replacement

- Rheology
 - High sag resistance
 - High efficiency in flat-satin formulations
 - Resistance to viscosity loss with colorant
 - Resistance to viscosity loss on water dilution
 - Roller pattern
 - “application feel”

- Color
 - Good color acceptance/color float
 - Resistance to viscosity loss with colorant

- Dry-film properties
 - Excellent water resistance
 - Good scrub resistance
New HASE : ACRYSOL™ DR-110 ER

Hydrophobically modified, alkali-soluble, emulsion-form thickener (HASE) designed as an alternative to cellulose ethers for latex based paint thickening.

<table>
<thead>
<tr>
<th>Property</th>
<th>Typical Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Milky white emulsion</td>
</tr>
<tr>
<td>Solids, by weight, %</td>
<td>30.0</td>
</tr>
<tr>
<td>Density (g/ml), wet</td>
<td>1.06</td>
</tr>
<tr>
<td>pH</td>
<td>4.3</td>
</tr>
<tr>
<td>Viscosity (Brookfield #2, 60 rpm), cps</td>
<td>< 50</td>
</tr>
<tr>
<td>Stabilization</td>
<td>Anionic</td>
</tr>
<tr>
<td>Storage precautions</td>
<td>Protect from freezing</td>
</tr>
</tbody>
</table>

Properties are typical but do not constitute specifications
ACRYSOL™ DR-110 ER

- Shows the typical HASE advantages over cellulosics:
 - Liquid delivery, low viscosity emulsion – easy of handling
 - Enzyme resistant – good paint storage stability
 - Good spatter resistance – Ease of application
 - Possibility of post-addition as well addition in the grind for ease of formulation

- Good alternative to cellulose ethers based on:
 - Matching rheology profile
 - Good retention of viscosity upon water dilution
 - Good performance upon tinting: good colour acceptance, reduced colour float

- Can lower the total formulation cost
 - As first estimate, recommended to replace HEC with 2 parts of this new HASE
Use Level Across Binders/Formulations

New HASE Use Level versus cellulosics

- PVA-blend flat
- Acrylic eggshell
- Acrylic semigloss
- Acrylic exterior flat
- PVA flat

Legend:
- HASE 110 (dry)
- HEC (dry)
Rheology of the New HASE

Brookfield rheology at constant Stormer Viscosity (121 – 124 KU) in S/A based flat paint at 70 PVC.

In this formulation, the New HASE Acrysol™ DR-110 ER show a more comparable rheology to cellulosics than standard HASE.
Excellent viscosity retention after water dilution

20% water dilution KU viscosity loss, acryl-vinyl binder 64% PVC Flat

- Standard HASE
- HEC
- New HASE
Excellent viscosity retention after water dilution

Water dilution of paints based on styrene-acrylic binder at various PVC levels (flat and semi-gloss)

The New HASE shows a better viscosity retention after dilution versus other HASE thickeners
Excellent Colour Compatibility – Colour Float

HASE

HEC

New HASE

Acryl-vinyl based flat paint tinted with 3% colorant, 1 week at 60°C

Excellent Color Compatibility
Effect of PVC on Scrub Resistance

Scrub Resistance

- New HASE
- HEC
- HMHEC

Cut Thru Cycles

PVC

0 500 1000 1500 2000

49 57

vinyl acrylic flat
PJ9-25
Can Thicken the Grind

New HASE in Grind

<table>
<thead>
<tr>
<th></th>
<th>100% in Letdown</th>
<th>40% in Grind 15 min</th>
<th>40% in Grind 30 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brookfield Visc, Spindle #4, cPs, 25C</td>
<td>46590</td>
<td>45990</td>
<td>42791</td>
</tr>
<tr>
<td>3RPM</td>
<td>16546</td>
<td>16147</td>
<td>15197</td>
</tr>
<tr>
<td>12RPM</td>
<td>5479</td>
<td>5399</td>
<td>5129</td>
</tr>
<tr>
<td>Sag resistance (mils)</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Leneta Flow</td>
<td>5</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Vinyl-acrylic flat paint
Conclusions

- The New HASE Acrysol™ DR-110 ER can be used as a close alternative to cellulosics
 - Matching rheology profile
 - Good retention of viscosity upon water dilution
 - Good performance upon tinting: good colour acceptance, reduced colour float
 - Can lead to lower formulation costs

- Additional advantages versus cellulosics
 - Liquid delivery, low viscosity emulsion – ease of handling
 - Enzyme resistant – good paint storage stability
 - Good spatter resistance – Ease of application
 - Possibility of post-addition as well addition in the grind for ease of formulation
THANK YOU FOR YOUR ATTENTION

Pol Storme
Dow Coating Materials
Tel. + 32 3 250 4222
Email: stormep@dow.com
Coating Materials

HANDLING PRECAUTIONS
- Before using any product mentioned herein, consult the product’s Material Safety Data Sheet (MSDS)/Safety Data Sheet (SDS) for details on product hazards, recommended handling precautions and product storage.

PRODUCT STEWARDSHIP
- Dow has a fundamental concern for all who make, distribute, and use its products, and for the environment in which we live. This concern is the basis for our product stewardship philosophy by which we assess the safety, health, and environmental information on our products and then take appropriate steps to protect employee and public health and our environment. The success of our product stewardship program rests with each and every individual involved with Dow products - from the initial concept and research, to manufacture, use, sale, disposal, and recycle of each product.

- Dow strongly encourages its customers to review both their manufacturing processes and their applications of Dow products from the standpoint of human health and environmental quality to ensure that Dow products are not used in ways for which they are not intended or tested. Dow personnel are available to answer your questions and to provide reasonable technical support. Dow product literature, including safety data sheets, should be consulted prior to use of Dow products. Current safety data sheets are available from Dow.

CUSTOMER NOTICE
- Notice: No freedom from infringement of any patent owned by Dow or others is to be inferred. Because use conditions and applicable laws may differ from one location to another and may change with time, Customer is responsible for determining whether products and the information in this document are appropriate for Customer's use and for ensuring that Customer's workplace and disposal practices are in compliance with applicable laws and other government enactments. The product shown in this literature may not be available for sale and/or available in all geographies where Dow is represented. The claims made may not have been approved for use in all countries. Dow assumes no obligation or liability for the information in this document. References to “Dow” or the “Company” mean the Dow legal entity selling the products to Customer unless otherwise expressly noted. NO WARRANTIES ARE GIVEN; ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED.