Created with Sketch.

12. Jan 2021 | Application Areas

Safety plus: Damaged ropes change colour

Empa researchers have developed a coating that changes colour when exposed to high temperatures through friction or fire.
Firefighters in action could benefit from the new type of coating. 
Image source: Freak06 - Pixabay (symbol image). 

The firefighter runs into the burning building and systematically searches room by room for people in need of rescue. Attached to him is a safety rope at the other end of which his colleagues are waiting outside in front of the building. In an emergency - should he lose consciousness for any reason - they can pull him out of the building or follow him into the building for rescue. However, if this rope has been exposed to excessive heat during previous operations, it may tear apart. This means danger to life! And up to now there has been no way of noticing this damage to the rope. A team of researchers from Empa and ETH Zurich has now developed a coating which changes color due to the physical reaction with heat, thus clearly indicating whether a rope will continue to provide the safety it promises in the future.

Researchers from ETH Zurich and Empa developed a coating system in 2018 as part of a Master's thesis, which the Empa team was now able to apply to fibers. "It was a process involving several steps," says Dirk Hegemann from Empa's Advances Fibers lab. The first coatings only worked on smooth surfaces, so the method first had to be adapted so that it would also work on curved surfaces. Empa has extensive know-how in the coating of fibers - Hegemann and his team have already developed electrically conductive fibers in the past. The so-called sputtering process has now also been successfully applied to the latest coating.

Three layers

Three layers are required to ensure that the fiber actually changes colour when heated. The researchers apply silver to the fibre itself, in this case PET (i.e. polyester) and a high-tech fibre. This serves as a reflector - in other words, as a metallic base layer. This is followed by an intermediate layer of titanium nitrogen oxide, which ensures that the silver remains stable. And only then follows the amorphous layer that causes the colour change: Germanium-antimony tellurium (GST), which is just 20 nanometers thick. When this layer is exposed to elevated temperatures, it crystallises, changing the colour from blue to white. The colour change is based on a physical phenomenon known as interference. Two different waves (e.g. light) meet and amplify or weaken each other. Depending on the chemical composition of the temperature-sensitive layer, this colour change can be adjusted to a temperature range between 100 and 400 degrees and thus adapted to the mechanical properties of the fiber type.

The possible areas of application for the colour-changing fibres are still open, and Hegemann is currently looking for possible project partners. In addition to safety equipment for firefighters or mountaineers, the fibres can also be used for load ropes in production facilities, on construction sites, etc. In any case, research on the subject is far from complete. At present, it is not yet possible to store the fibers for long periods of time without losing their functionality. "Unfortunately, the phase-change materials oxidise over the course of a few months," says Hegemann. This means that the corresponding phase change - crystallization - no longer takes place, even with heat, and the rope thus loses its "warning signal". In any case, it has been proven that the principle works, and durability is a topic for future research, says Hegemann. "As soon as the first partners from industry register their interest in our own products, the fibers can be further optimised according to their needs."

More information can be found on the Empa-Website.

EC Library The Rheology Handbook


The Rheology Handbook

Already in its 5th edition, this standard work describes the principles of rheology clearly, vividly and in practical terms. The book includes the rheology of additives in waterborne dispersions and surfactant systems. Not only it is a great reference book, it can also serve as a textbook for studying the theory behind the methods. The practical use of rheology is presented in the areas quality control, production and application, chemical and mechanical engineering, materials science and industrial research and development. After reading this book, the reader should be able to perform tests with rotational and oscillatory rheometers and interpret the results correctly.

This could also be interesting for you!


You are currently not logged in

To leave a comment, please log in.

For continuously improving and optimizing our websites, we use cookies. By using our website, you agree to the usage of cookies. For more information, please visit our Privacy policy.