Created with Sketch.

28. Jan 2020 | Raw materials

Further studies of the hydration of MgO-hydromagnesite blends

Scientists have investigated the hydration of magnesium oxide in the presence of hydromagnesite (Mg5(CO3)4(OH)2·4H2O).

A graphic that displays various diagrams and examination results on a monitor.

The hydration of magnesium oxide in the presence of hydromagnesite was investigated. Image source: Bildquelle: Gerd Altaman / Pixabay. (Symbol image)

The hydration products are a poorly-crystalline form of brucite (Mg(OH)2) and an unknown amorphous or poorly crystalline hydrate, which was evidenced by X-ray diffraction analyses and Raman spectroscopy.

By thermogravimetry it was found that in the presence of hydromagnesite more water is bound in hydrate phases than can be explained by the formation of brucite only. The unknown hydrate is hypothesized to lead to cohesive binding in MgO-hydromagnesite blends.

No significant effect on hydration kinetics

Due to thermodynamic predictions artinite (Mg2(CO3)(OH)2·3H2O) should be the stable hydrate in this system. The addition of artinite crystal seeds, however, had no significant effect on hydration kinetics or nature of the reaction products.

The hypothesis that the addition of sodium bicarbonate (NaHCO3) could modify or accelerate the hydration reactions due to its high solubility and the supply of additional HCO3− ions was also not supported by the experiments.

The study has been published in Cement and Concrete Research, Volume 126.

Image source: Pixabay.

EC Library The Rheology Handbook


The Rheology Handbook

Already in its 5th edition, this standard work describes the principles of rheology clearly, vividly and in practical terms. The book includes the rheology of additives in waterborne dispersions and surfactant systems. Not only it is a great reference book, it can also serve as a textbook for studying the theory behind the methods. The practical use of rheology is presented in the areas quality control, production and application, chemical and mechanical engineering, materials science and industrial research and development. After reading this book, the reader should be able to perform tests with rotational and oscillatory rheometers and interpret the results correctly.

This could also be interesting for you!


You are currently not logged in

To leave a comment, please log in.

For continuously improving and optimizing our websites, we use cookies. By using our website, you agree to the usage of cookies. For more information, please visit our Privacy policy.