Please wait.'

Page is loading'


Home  > Raw materials & technologies  > Applications  > Natural adhesive could support biomedical...

Thursday, 19 September 2019
pdf
Raw materials & technologies, Applications

Natural adhesive could support biomedical applications

Thursday, 10 March 2016

Chemists have created a nonpermanent adhesive from a natural chemical reaction that can be used in the biomedical field.

By adding water and two chemicals during the urea-urease clock reaction, the researchers were able to create a water-soluble adhesive gel. Source: Uwe Wagschal/pixelio.de
By adding water and two chemicals during the urea-urease clock reaction, the researchers were able to create a water-soluble adhesive gel. Source:...

This discovery may benefit tissue repair or drug delivery. The scientific journal Angewandte Chemie recently published this collaborative work between LSU and University of Sheffield researchers.

Create a "pH clock reaction

The scientists studied the natural chemical process that occurs when urea, a molecule found in urine, is broken down by the enzyme urease, which produces ammonia and carbon dioxide. Based on previous studies, scientists know how long it takes urease to break down urea, which can be used to create a chemical process called a "pH clock reaction.” They chose urea and urease because it is one of the few nontoxic and natural clock reactions. By adding water and two chemicals - a sulfur-based thiol and a synthetic acrylate - during the urea-urease clock reaction, the researchers were able to create a thin, water-soluble adhesive gel.

Changes from acidic to basic

The researchers tested more than 20 different combinations of chemicals in this experiment before achieving the intended reaction. As the urease breaks down, the urea and ammonia is produced, the watery solution changes from acidic to basic. The molecules then begin to build a framework of polymers that entraps water, and the solution solidifies into a gel that resembles Jell-O. In the study, the researchers identified how long it takes urease to break down urea, how long it takes the gel to form, at which time the gel will break down in a basic solution and how the solution reacts in different sized containers.

"By tuning the properties of this system, we can adjust the rate of degradation, which might be desirable in a biomedical adhesive or drug carrier in your body,” a researcher said.

top of page
Comments (0)
Add Comment

Post comment

You are not logged in

register