Detlef Gysau

FILLERS FOR PAINTS

3rd Revised Edition
Detlef Gysau
Fillers for Paints, Fundamentals and Applications, 3rd Revised Edition
Hanover: Vincentz Network, 2017
European Coatings Library
ISBN 978-3-86630-292-1

© 2017 Vincentz Network GmbH & Co. KG, Hanover
Vincentz Network, Plathnerstr. 4c, 30175 Hanover, Germany
T +49 511 9910-033, F +49 511 9910-029, books@european-coatings.com

This work is copyrighted, including the individual contributions and figures. Any usage outside the strict limits of copyright law without the consent of the publisher is prohibited and punishable by law. This especially pertains to reproduction, translation, microfilming and the storage and processing in electronic systems.

Discover further books from European Coatings Library at:
www.european-coatings.com/shop

Layout: Schubert, Hamburg, Germany
Fillers for Paints
Fundamentals and Applications

3rd Revised Edition
For Jacqueline and Gian-Flurin and Mica-Ladina and also Rambo and Fuchur

There is no debt more pressing than the expression of gratitude.

Marcus Tullius Cicero
Foreword

The topic of fillers for use in paints and varnishes is an old one, so one might ask why there has been no comprehensive book on the subject to date. Could it be something to do with the earlier prevailing perception of fillers as cheap materials for bulking up profits? Are fillers even worth writing about? Certainly! The sheer number of mineral end-products, the frequently underestimated effort that goes into their manufacture, the testing done to characterise their diverse properties, their wide-ranging applications – that is an awful lot of information to pack into a single work without diluting its focus.

Simply to consider the spectrum of professions involved in producing and using fillers – geologists, mineralogists, mechanical engineers, machine operators, chemists, paint and varnish specialists – highlights the extent of hidden technical activity. Fillers are instrumental in many properties of coating materials and films: their rheology, content of volatile organic compounds, solids content, brightness, opacity, reflectivity, adhesion, anti-corrosion characteristics, mechanical and chemical resistance... the list goes on. The bottom line is, proper use of fillers calls for a great deal of knowledge.

The present book sets out to convey that knowledge in a straightforward and understandable manner, without compromising scientific objectivity and rigour. Special attention has been given to clear topical division and structuring, to facilitate finding pertinent information, fast. That having been said, the gamut of available fillers is so vast that there would be insufficient space to cover all the materials out there, some of them quite exotic. Instead, this book concentrates on fillers in regular current use, with numerous figures and tables to illustrate their properties and applications. All the same, this book cannot claim to be exhaustive in scope. Readers wishing to obtain further information and details will be served by the extensive bibliographic references provided.

This book is intended for anyone who is in any way professionally involved with fillers used in coating materials. Beginners and students will gain a comprehensive overview of the field, while experienced developers will find practical details of immediate relevance to solving their everyday problems.

In 2016 I was notified that also the second edition of “Fillers for Paints” is going to be sold out soon as well. I am more than delighted to learn that also the second edition found so many new readers. The continued interest in my book is also judged by manifold feedbacks which I received since 2006. All of them expressed to me their thanks and congratulations by filling a knowledge gap in raw materials for paints.

Detlef Gysau: Fillers for Paint
© Copyright 2017 by Vincentz Network, Hanover, Germany
In particular, I appreciate that the book supports training for all different kind of groups, either in industry or science. The third edition allowed me to place small corrections, update market and filler data and add more sub chapters about new fillers and nevertheless an outlook about the future, for example sustainability and light weight fillers.

Detlef Gysau
Oftringen/Switzerland, January 2017
Contents

1 **Introduction**
1.1 Historical overview 13
1.2 Filler market 15
1.3 Definition of fillers and pigments 16
1.4 Classification of fillers 17
1.5 References 18

2 **Mineralogy**
2.1 Carbonates
2.1.1 Calcium carbonate 20
2.1.2 Dolomite 25
2.2 Silicas
2.2.1 Quartz 26
2.2.2 Cristobalite 27
2.2.3 Kieselguhr 28
2.3 Silicates
2.3.1 Talcum 30
2.3.2 Kaolin 32
2.3.3 Mica 34
2.3.4 Feldspar 35
2.4 Barium sulphate 36
2.5 References 38

3 **Production of fillers**
3.1 Production of natural fillers 41
3.1.1 Prospecting 41
3.1.2 Mining 42
3.1.3 Processing 45
3.2 Synthetic fillers
3.2.1 Precipitated calcium carbonate 51
3.2.2 Precipitated barium sulphate 53
3.2.3 Modified calcium carbonate 55
3.2.4 Synthetic silicic acids 56
3.2.5 Precipitated aluminium silicate 59
3.3 Surface treatment of fillers 60
3.4 References 61
Contents

4 Characterisation of fillers

4.1 Filler testing .. 63
4.1.1 Optical properties 64
4.1.2 Morphology 68
4.1.3 Physical properties 74
4.1.4 Chemical properties 77
4.2 Filler analytics 79
4.2.1 Scanning electron microscopy 79
4.2.2 Spectroscopy 81
4.2.3 Chromatography 85
4.2.4 Further methods 87
4.3 References ... 89

5 Properties of fillers

5.1 Carbonates ... 91
5.1.1 Natural calcium carbonate 92
5.1.2 Precipitated calcium carbonate 98
5.1.3 Modified calcium carbonate 100
5.1.4 Dolomite .. 103
5.2 Silicates .. 106
5.2.1 Talcum .. 106
5.2.2 Kaolin .. 110
5.2.3 Mica .. 115
5.2.4 Feldspar .. 118
5.2.5 Precipitated aluminium silicate 120
5.3 Silicas ... 122
5.3.1 Quartz .. 122
5.3.2 Cristobalite 125
5.3.3 Diatomaceous earth 128
5.3.4 Pyrogenous silicic acid 129
5.3.5 Precipitated silicic acid 132
5.4 Barium sulphate 134
5.4.1 Natural barium sulphate 135
5.4.2 Precipitated barium sulphate 137
5.5 Aluminium hydroxide and other mineral fillers 139
5.6 Organic fillers 141
5.7 References ... 144
Contents

6 Applications of fillers ... 145
 6.1 Importance of fillers in paints and coatings 145
 6.2 Important formulation parameters 146
 6.2.1 Non-volatile matter ... 146
 6.2.2 Spreading rate .. 147
 6.2.3 Pigment volume concentration 148
 6.2.4 Critical pigment volume concentration 151
 6.2.5 Pigment/filler loading .. 155
 6.2.6 Packing density ... 156
 6.3 Filler influences on coating materials 159
 6.3.1 Dispersibility .. 159
 6.3.2 Rheology ... 161
 6.3.3 Wet hiding power .. 163
 6.3.4 Storage stability ... 165
 6.4 Filler influences on coatings ... 167
 6.4.1 Hiding power .. 167
Contents

6.4.2 Colour properties .. 174
6.4.3 Reflectivity ... 176
6.4.4 Mechanical properties ... 179
6.4.5 Chemical resistance ... 181
6.4.6 Outdoor durability .. 183
6.5 References ... 186

7 Trends .. 187
 7.1 Nanotechnology ... 188
 7.2 Forms of delivery .. 190
 7.3 Sustainability ... 190
 7.4 Light weight fillers .. 192
 7.5 References ... 193

Examples for guide formulations 194

List of filler examples ... 204

Author ... 207

Index ... 209
1 Introduction

1.1 Historical overview

Paints and varnishes have a history that goes back around 100,000 years, to the time when stone age peoples applied red body-paint as part of their cultish rituals[1]. The first paintings on cave walls date back to the late Stone Age, their origins still somewhat shrouded in mystery. Many thousands of years later, in the 4th century B.C., the intermingling of ancient Egyptian and Greek civilisations brought remarkable developmental advances through “Hagia Techné” or “Alchimia” – hallowed arts practiced by the high priests of the day. Their discoveries about the secrets of paint making remained influential well beyond the 16th century A.D. As the industrial revolution started in the 18th century, paints and varnishes came into widespread use for many different applications. Early 20th century triumphs of chemistry and technology in particular signified a clear departure from empiricism, to science.

The history of fillers can be traced back almost as far as paints and varnishes. Pigment analysis has revealed the presence of filler materials in early cave paintings[2, 3], the oldest identifiable specimens dating from 20,000 to 30,000 years ago, see Table 1.1 p.14. However, the first people to systematically use fillers for their cave paintings were the ancient Egyptians, and the Mediterranean cultures that succeeded them. The most frequent materials were chalk and gypsum, both white mineral fillers. Clays, or crushed mollusc shells, were also used on occasion. As history progressed, the ancient Greeks began using a mineral that was whiter still: white lead. Because of its rare occurrence in nature, they developed an intricate process to obtain the pigment synthetically. Contemporary demand for greater opacity and brightness evidently made the effort worthwhile. The Roman historians Pliny and Vitruvius respectively reported eight and five white pigments then in use, although only three were of real significance: the minerals melinum, paraetanum and cerussa (white lead).

During the period of the Roman Empire, there was a marked increase in the consumption of fillers, which were used in paints for murals, panels and frescoes. But filler production collapsed along with the Roman Empire, and artists subsequently resorted to local minerals. There were large chalk deposits in England, France, the Netherlands and Germany. Even in Spain, chalk grew prevalent under the name of Spanish white. In Italy, though, gypsum predominated. That was the situation until the 19th century, when the industrial revolution came into full swing.

The enormous increase in consumption of raw materials during the industrial revolution also brought a sustained rise in demand for fillers. Semi- and fully-automatic dress-
Introduction

<table>
<thead>
<tr>
<th>Ancient name</th>
<th>Modern name</th>
<th>Mineral composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerussa (^{(1,2)})</td>
<td>White lead, Krems White, etc.</td>
<td>Basic lead carbonate, made from metallic lead and vinegar</td>
</tr>
<tr>
<td>Creta anularia (^{(1,2)})</td>
<td>Crete white</td>
<td>Chalk mixed with powdered glass</td>
</tr>
<tr>
<td>Cimolia creta (^{(1)})</td>
<td>Kimolos chalk</td>
<td>Chalk or clay-like material</td>
</tr>
<tr>
<td>Creta eretria (^{(1)})</td>
<td></td>
<td>Probably a white talc, named after a place on the southwest coast of Euboa</td>
</tr>
<tr>
<td>Creta selinusia (^{(1,2)})</td>
<td>Selinus chalk</td>
<td>Chalk or chalk clay, named after a place on Sicily</td>
</tr>
<tr>
<td>Melinum (^{(1,2)})</td>
<td>Melian white</td>
<td>Bianca San Giovannini or white clay</td>
</tr>
<tr>
<td>Paraetonium (^{(1,2)})</td>
<td>White sepiolite</td>
<td>Limestone chalk with some magnesium phosphate, silicic acid and clay, named after a place in Libya</td>
</tr>
<tr>
<td>Creta argentaria (^{(1)})</td>
<td>Argentiferous chalk</td>
<td>Chalk</td>
</tr>
</tbody>
</table>

\(^{(1)}\) Pliny, *Natural History*, XXXV \(^{(2)}\) Vitruvius, *Ten Books on Architecture*, VII

Table 1.1: Natural and synthetic white minerals used by the ancients

Figure 1.1: Overall European production of paints and varnishes, in millions of tons

ing processes were developed to address this demand, as well as to meet the steadily advancing requirements of industry. High-power machinery like crushers, grinding drums and classifiers came into use. The end of the Second World War brought even greater demand for fillers, which was a motor for further modernisation by the filler industry. The resulting technical developments led to ever-finer natural fillers and tailor-made synthetic fillers, some with surface coatings, see Figure 1.1 p.14.

1.2 Filler market

The market often underrates fillers, on account of their relatively low price compared to the other raw materials used for making paints and varnishes. Overall Global and European show a continuous growth since 1997. Once believing the prognosis for the global paint and coatings market, then the number will almost double from 1997 to 2018 to approx. 47 Mio tons. Despite the growth for the production in Europe, its global share drops from 32.0 % in 1997 versus a much stronger growth in emerging markets such as Asia to 23 % in 2018.

If one compares the four million-plus tons of fillers consumed in 2003 with the quantity of paints and varnishes produced in that year, their 42 percent statistical share makes it clear that fillers are the dominant class of raw materials used in paint and varnish production, see Figure 1.2 p.15.

The chart of mineral fillers in current use reveals another dominance: natural calcium carbonate is the basis for three quarters of all the fillers used in paints and varnishes. Carbonate fillers together have an 85 percent aggregate share. This profile of mineral filler consumption is essentially repeated on other continents as well, see Figure 1.3, p. 16.

An analysis of application areas reveals that most fillers go into architectural paints, in particular emulsion paints. This group of paint systems is far and away the largest, at around 60 percent of overall paint and varnish production. Empirically speaking, classical and contemporary coating systems both tend to use considerably less fillers, or indeed dispense with them altogether. These systems generally are formulated below the critical pigment volume concentration (CPVC), which necessitate a higher proportion of pigments in order to achieve sufficient opacity.
1.3 Definition of fillers and pigments

There are numerous differences in the properties of fillers and pigments. Yet they can also overlap, depending on the application. Therefore, it is important to draw a clear distinction between these two groups of raw materials. Help is provided by the sets of standard specifications published by the German standards institution (DIN)\(^{[4, 5]}\), the European Committee for Standardisation (CEN) and the International Organisation for Standardisation (ISO)\(^{[6]}\).

According to DIN 55943, EN 971-1 and ISO 3262 part 1, “a filler is a substance consisting of particles which is practically insoluble in the application medium and is used to increase volume or to improve technical properties and/or to influence optical properties.” The standards discourage the use of terms like “extender”, “extender pigment”, or “pigment extender”, instead stating that “on this basis, whether a substance should be regarded as a filler or a pigment is determined by its application.”

Pigments are defined in the German standards DIN 55943 and DIN 55945: “A pigment is a substance consisting of particles which is practically insoluble in the application medium and is used as a colorant or by virtue of its corrosion-inhibiting or magnetic properties.” Pigments may be described more precisely, for example as inorganic or organic pigments, coloured pigments, white pigments, effect pigments, anti-corrosion pigments, magnetic pigments, etc. depending on their chemical composition, optical or other technical properties.

![Figure 1.3: Percent share of fillers in Europe, categorised by mineral](image-url)
Definition of fillers and pigments

Practically speaking, material constants like the refractive index often determine whether a substance is acting as a pigment or a filler. This is usually apparent from the optical effect of the substance as a component of the coating material. If the substance helps to increase opacity, then it has the characteristics of a pigment. If it behaves transparently, though, it is considered to be a filler. In general, materials with a high refractive index \((\geq 1.7)\) are pigments. All other mineral materials with a similar refractive index, like organic polymers, belong in the category of fillers.

1.4 Classification of fillers

Given the diversity of mineral fillers, it is helpful to divide them into various categories. Categories like carbonates, silicates, silicas (silicon dioxides), sulphates, oxides and organic
fillers include well known as well as more obscure materials. In addition to this type of categorisation, fillers are also grouped according to their natural versus synthetic origin.

Not all of the fillers listed in Table 1.2 are (as yet) industrially significant. Although they have been listed here for the sake of completeness, they will not be covered in subsequent chapters of this book.

1.5 References

Detlef Gysau, Omya International AG, has been engaged in the development of hydro-fillers for the automotive industry at Akzo Coatings in Stuttgart, after his apprenticeship of a paint laboratory assistant (1985–88). During his studies he joined the industrial research centre of Rohm and Haas, Philadelphia and the R+D lab for photo initiators at Ciba-Geigy, Basel. 1996 he acquired his engineer degree in the fields of paints, lacquers and plastics (M.Eng.) at the University of Applied Science in Stuttgart. Today, he is employed at Omya International and led for 14 years the Applied Technology Services for Paints, Coatings & Adhesives (ATS-PCA) with global responsibility for development and technical service. In 2010 Detlef Gysau finished his Executive MBA in General Management at the University of St. Gallen, Switzerland and changed to Omya’s Group Function Sales & Marketing. Here he held positions as Marketing Strategy Manager, Head of Product Management and actually Head of Innovation & Technical Marketing in the Segment Construction.
Index

Symbols

α-quartz 26
β-quartz 26

A

AAS 82, 83
abrasion 77
abrasion resistance 120
absorptive capacity 189
accelerated weathering testers 183
additional grinding stage 58
adhesion 181
adhesion strength 181, 189
adsorbent layer 151
aerogels 139
Aerosil process 58
agglomerated fillers 190
agglomeration 160
agglomeration formation 165
aggregate 160
air-jet sieving 69
air permeability 70
air pores 111
air voids 172
albite 35, 118
aluminium hydroxide 139
alumosilicate 118
amorphous 120
analysis techniques 63
anti-corrosion 189
aragonite 23, 51, 98
asbestos 139
aspect ratio 106
atomic absorption spectroscopy 82, 83
atomic emission spectroscopy 82, 84
ATR 82
attenuated total reflectance 82

B

ball mill 47
barium sulphate 36, 134
barrier effect 115
barrier layer 141
barrier properties 115, 182
baryte 36, 134
Bayer process 140
bead mill 160
belt structure 29
bentonite 139
BET method 55, 64, 73
binder consumption 131
binder volume 151
Blaine 70, 73, 99
blanc fixe 53, 137
body 147
brightness 174
brightness L* 65, 66
brightness reference value 153
BRV 153
bulk density 74, 75
bulk volume 60, 75
Bunsen 83

C

calcination 28, 128
calcite 23, 51, 92, 98
calcite crystal 21

Detlef Gysau: Fillers for Paints
© Copyright 2017 by Vincentz Network, Hanover, Germany
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>calcium aluminium silicate</td>
<td>139</td>
</tr>
<tr>
<td>calcium carbonate</td>
<td>20</td>
</tr>
<tr>
<td>calcium hydroxide</td>
<td>51</td>
</tr>
<tr>
<td>calcium stearate</td>
<td>60</td>
</tr>
<tr>
<td>calcium sulphate</td>
<td>139</td>
</tr>
<tr>
<td>capillary</td>
<td>158</td>
</tr>
<tr>
<td>carbonate compensation depth</td>
<td>20</td>
</tr>
<tr>
<td>carbonates</td>
<td>19</td>
</tr>
<tr>
<td>carbon footprint</td>
<td>187</td>
</tr>
<tr>
<td>Carrara</td>
<td>24</td>
</tr>
<tr>
<td>CAS</td>
<td>91</td>
</tr>
<tr>
<td>CCA-Europe</td>
<td>38</td>
</tr>
<tr>
<td>CEN</td>
<td>16</td>
</tr>
<tr>
<td>cenospheres</td>
<td>192</td>
</tr>
<tr>
<td>chalk</td>
<td>13, 21, 92</td>
</tr>
<tr>
<td>chalking</td>
<td>185</td>
</tr>
<tr>
<td>Champagne</td>
<td>24</td>
</tr>
<tr>
<td>Chemical Abstracts Service</td>
<td>91</td>
</tr>
<tr>
<td>chemically inert</td>
<td>182</td>
</tr>
<tr>
<td>chemically inert filler</td>
<td>182</td>
</tr>
<tr>
<td>chemical properties</td>
<td>77</td>
</tr>
<tr>
<td>chemical resistance</td>
<td>181</td>
</tr>
<tr>
<td>chemisorption</td>
<td>60</td>
</tr>
<tr>
<td>china clay</td>
<td>33, 110</td>
</tr>
<tr>
<td>chlorite</td>
<td>30, 34</td>
</tr>
<tr>
<td>chromatography</td>
<td>85</td>
</tr>
<tr>
<td>CIE-Lab*</td>
<td>66</td>
</tr>
<tr>
<td>cigar-shaped</td>
<td>98</td>
</tr>
<tr>
<td>classifier</td>
<td>48</td>
</tr>
<tr>
<td>cleanability</td>
<td>189</td>
</tr>
<tr>
<td>coarse sieving</td>
<td>45</td>
</tr>
<tr>
<td>coating film</td>
<td>167</td>
</tr>
<tr>
<td>coccoliths</td>
<td>21</td>
</tr>
<tr>
<td>cold-water extraction</td>
<td>78</td>
</tr>
<tr>
<td>colour depth</td>
<td>176</td>
</tr>
<tr>
<td>colour properties</td>
<td>174</td>
</tr>
<tr>
<td>colour retention</td>
<td>185</td>
</tr>
<tr>
<td>colour strength</td>
<td>174</td>
</tr>
<tr>
<td>compacted fillers</td>
<td>190</td>
</tr>
<tr>
<td>complexometric titration</td>
<td>89</td>
</tr>
<tr>
<td>contrast ratio</td>
<td>148, 170</td>
</tr>
<tr>
<td>cooling effect</td>
<td>141</td>
</tr>
<tr>
<td>corrosion-encouraging agents</td>
<td>182</td>
</tr>
<tr>
<td>coulometry</td>
<td>89</td>
</tr>
<tr>
<td>CPVC</td>
<td>149, 151</td>
</tr>
<tr>
<td>cristobalite</td>
<td>27, 125</td>
</tr>
<tr>
<td>critical pigment volume concentration</td>
<td>149, 151</td>
</tr>
<tr>
<td>cross-hatch test</td>
<td>181</td>
</tr>
<tr>
<td>crusher</td>
<td>46</td>
</tr>
<tr>
<td>cubic</td>
<td>98</td>
</tr>
<tr>
<td>cubic particle shape</td>
<td>121</td>
</tr>
</tbody>
</table>

D

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>dead matt</td>
<td>178</td>
</tr>
<tr>
<td>deagglomeration</td>
<td>174</td>
</tr>
<tr>
<td>degree of mattness</td>
<td>178</td>
</tr>
<tr>
<td>delamination</td>
<td>32, 115</td>
</tr>
<tr>
<td>density</td>
<td>165</td>
</tr>
<tr>
<td>diagenesis</td>
<td>21</td>
</tr>
<tr>
<td>diatomaceous earth</td>
<td>27, 28, 128</td>
</tr>
<tr>
<td>diatomite</td>
<td>28</td>
</tr>
<tr>
<td>diffuse light reflection</td>
<td>178</td>
</tr>
<tr>
<td>diffusion</td>
<td>158</td>
</tr>
<tr>
<td>diffusion path</td>
<td>182</td>
</tr>
<tr>
<td>dilatancy</td>
<td>158</td>
</tr>
<tr>
<td>DIN</td>
<td>16</td>
</tr>
<tr>
<td>dispersant</td>
<td>49</td>
</tr>
<tr>
<td>dispersibility</td>
<td>165, 190</td>
</tr>
<tr>
<td>dispersing device</td>
<td>159</td>
</tr>
<tr>
<td>dispersion</td>
<td>189</td>
</tr>
<tr>
<td>dissolver</td>
<td>160</td>
</tr>
<tr>
<td>dolomite</td>
<td>25, 103</td>
</tr>
<tr>
<td>double carbonate</td>
<td>104</td>
</tr>
<tr>
<td>dry grinding</td>
<td>49</td>
</tr>
<tr>
<td>dry hiding effect</td>
<td>167</td>
</tr>
</tbody>
</table>

E

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDS</td>
<td>79, 81</td>
</tr>
<tr>
<td>efficiency</td>
<td>187</td>
</tr>
<tr>
<td>EINECS</td>
<td>91</td>
</tr>
<tr>
<td>EKA</td>
<td>38</td>
</tr>
<tr>
<td>electron backscatter diffraction</td>
<td>81</td>
</tr>
<tr>
<td>electron microscopy</td>
<td>80</td>
</tr>
<tr>
<td>energy-dispersive X-ray fluorescence</td>
<td>85</td>
</tr>
<tr>
<td>Erichsen indentation</td>
<td>181</td>
</tr>
<tr>
<td>Eurofel</td>
<td>39</td>
</tr>
</tbody>
</table>
European Inventory of Existing Commercial Chemical Substances 91
Eurosil 38
Eurotalc 38
explosives 43

F

fatty acid composition 86, 88
feldspar 35, 118
filler 16
filler categories 17
filler consumption 15
filler packing 109
filler testing 63, 64, 65–77
filling capacity 145
film porosity 152
film tension 153
fire clays 33
flame retardant 140
flash calcination 49, 110
flexibility 181
flotation 45
flux calcination 28
flux calcined diatomaceous earth 129
fly ash 192
forms of delivery 190
formulation parameters 145, 146
Fourier transform infrared spectrometers 82
frameworks 162
Fraunhofer theory 70
FTIR 82
fumed silica 58
functionality 187

G
gangue quartz 26
gas chromatography 85
Gay-Lussac 75
GC 85
GCC 92
Gilsonite 152
gloss 176
gloss retention 185
granulate 45
grinding fineness 160
grinding process 45
grindometer wedge 160
ground slate 139

H

handling 190
hardness 181
HDK 58
heat resistance 189
heavy-duty industrial floor coating 181
Helmen 185
hiding power 163, 167
highly dispersed silicic acids 58
hollow 141, 192
hornblende 139
hot-water extraction 78
hydrargillite layer 33
hydride technique 83
hydrocyclone 49
hydrogen bond 165
hydrophobic fillers 78
hydrophobicity 78, 180
hydrosol 139
hydrous mica 35

I

IC 85
ICP 82, 84
impact test 181
incorporation 190
inductive coupled plasma 82, 84
infrared spectroscopy 81, 82
ion chromatography 85, 86
ion concentration 86
Index

ions 182
ISO 16
ISO 14001 64

K
kaolin 32, 110
kaolinite 32
kieselguhr 28
Kirchhoff 83
König pendulum hardness 181

L
lamellar 110, 117, 158
layer silicate 107, 110, 115
LCA 187
life cycle assessment 187
light scattering 189
light weight filler 75, 192
lime soda process 52
limestone 21, 92
Lückert 91

M
macrocristalline talcum 32
magnesite 25
magnesium carbonate 20
magnesium hydroxide 139
magnesium silicate hydrate 106
magnetic separator 45
Mandrel bend test 181
marble 22, 92
matt 176
mattening 134
matting 189
maximum-density packing 157
MCC 55, 100
mechanical properties 179
mesh 64, 69
metamorphosis 23
mica 34, 115
microcrystalline talcum 32
micronisation 47
Mie theory 70
milling agents 76, 77, 85
mineral hardness 75, 77
mineralogy 19
mining 42
modified calcium carbonate 55, 100
Mohs 20, 77
Mohs' hardness 77
moisture 35, 76, 88
moisture absorption 61
morphology 58, 68
muscovite 34, 115

N
nanomaterials 188
nano-products 187, 188, 189
nanoscale 129
nanoscale particles 130
nanotechnology 187, 188
natural barium sulphate 36, 135
natural calcium carbonate 92
needle-shaped 98
nepheline syenite 36, 118
networks 162
neutral white 104
nodular 158
nodular particle structure 96
non-volatile matter 146
NVM 146, 149

O
OES 82
oil absorption 152
oil demand 74
opacity 189
opencast mining 42
optical atomic emission spectroscopy 82, 84
optical properties 49, 64
optical sorting 45
organic compounds 76, 85
organic fillers 141
organofunctional silane 60
orthoclase 35
orthosilicic acid 56
oscillating shaker 160
outdoor durability 183
outdoor weathering 185
precipitated silicic acid 58, 59, 132
precipitated sodium aluminium silicate 59
pre-crushing 45
pre-grinding 45
primary crusher 44
primary filler 91
primary particles 159
prism 23
processing 45
production of fillers 41
production statistics for paints and varnishes 15
prospecting 41
PSD 92
PVC 148
pycnometer 64, 75
pyrogenous silicic acid 129
pyrolytic silicic acid 57
quality checks 63
quality control 63, 86
quality requirements 63
quarry 44
quartz 26, 122
quartz twin 27
quicklime 51
Q-value 155
reflectivity 145, 176
refractive index 67, 142
reinforcement 145, 189
resistance to chemicals 181
rheological modification 132
rheology 145, 161, 173, 189
rhombohedron 23, 25
rock washing 47
Ruf 98
Ruf corrosion tests 98
packing density 156
parallel draw down 169
particle shape 73, 162, 165
particle size 45, 54, 55, 63, 68, 69, 73
particle size distribution 92, 157
PCC 51, 98
PCC agglomeration 100
perlite 139
permanent white 53, 137
pH 77
phyllosilicate 30, 33
physiosorption 60
pigment particle spacing 167
pigment volume concentration 148
pigment, standardisation 16
pigment/binder ratio 156
pigment/filler loading 155
plagioclase 35
plastic hollow spheres 141
plastorite 34
polymer hollow sphere 141
polysilicic acids 57
porosity 151, 180
precipitated aluminium silicate 59, 120
precipitated barium sulphate 53, 137
precipitated calcium carbonate 51, 98
precipitated silicic acid 58, 59, 132
precipitated sodium aluminium silicate 59
pre-crushing 45
pre-grinding 45
primary crusher 44
primary filler 91
primary particles 159
prism 23
processing 45
production of fillers 41
production statistics for paints and varnishes 15
prospecting 41
PSD 92
PVC 148
pycnometer 64, 75
pyrogenous silicic acid 129
pyrolytic silicic acid 57
quality checks 63
quality control 63, 86
quality requirements 63
quarry 44
quartz 26, 122
quartz twin 27
quicklime 51
Q-value 155
reflectivity 145, 176
refractive index 67, 142
reinforcement 145, 189
resistance to chemicals 181
rheological modification 132
rheology 145, 161, 173, 189
rhombohedron 23, 25
rock washing 47
Ruf 98
Ruf corrosion tests 98
packing density 156
parallel draw down 169
particle shape 73, 162, 165
particle size 45, 54, 55, 63, 68, 69, 73
particle size distribution 92, 157
PCC 51, 98
PCC agglomeration 100
perlite 139
permanent white 53, 137
pH 77
phyllosilicate 30, 33
physiosorption 60
pigment particle spacing 167
pigment volume concentration 148
pigment, standardisation 16
pigment/binder ratio 156
pigment/filler loading 155
plagioclase 35
plastic hollow spheres 141
plastorite 34
polymer hollow sphere 141
polysilicic acids 57
porosity 151, 180
precipitated aluminium silicate 59, 120
precipitated barium sulphate 53, 137
precipitated calcium carbonate 51, 98
precipitated silicic acid 58, 59, 132
precipitated sodium aluminium silicate 59
pre-crushing 45
pre-grinding 45
primary crusher 44
primary filler 91
primary particles 159
prism 23
processing 45
production of fillers 41
production statistics for paints and varnishes 15
prospecting 41
PSD 92
PVC 148
pycnometer 64, 75
pyrogenous silicic acid 129
pyrolytic silicic acid 57
quality checks 63
quality control 63, 86
quality requirements 63
quarry 44
quartz 26, 122
quartz twin 27
quicklime 51
Q-value 155
reflectivity 145, 176
refractive index 67, 142
reinforcement 145, 189
resistance to chemicals 181
rheological modification 132
rheology 145, 161, 173, 189
rhombohedron 23, 25
rock washing 47
Ruf 98
Ruf corrosion tests 98
Index

S
salt spray test 181
scalenohedron 23
scanning electron microscopy 68, 70, 79
scanning transmission electron microscopy 80
scratch resistance 189
secondary filler 106, 114, 173
sedimentation 165
sedimentation analysis 19, 64, 68, 71
sedimentation rate 70, 166
SEM 80
sepiolite 139
serum formation 166
sheen 178
shrinkage crack-free drying 180
silanol groups 58
silica 25, 122, 125, 128, 129
silica gel 57, 133
silica sand 26
silica sol 57, 139
silicate 29, 106
silicate systems 127
siliceous earth 26, 27, 139
silification 125
SiO₄ unit 29
slurries 190
Snell’s law of refraction 67
sodium aluminium silicate 120
soiling 189
solids 146
solids content 145, 146
solubility of calcium carbonate 20
Solvay process 52
spacing 173, 179
Spanish white 13
spectroscopy 79, 81
spreading rate 147
stabilisation 165
stability 77, 189
standard colour value 65
stearic stabilisation 166
Stokes 69, 166
storage stability 165
stoving residue 146
stream separation method 48
strength 145
structural viscosity 162
surface structure 179
surface treatment 60
suspension behaviour 134
sustainability 190
syneresis 166
synthetic fillers 51
synthetic silicic acids 56

T
talcum 30, 106
talcum double layers 32
tamped density 74, 75, 76
tamped volume 76
tectosilicate 27, 36, 118
TEM 80
tetragonal crystal system 27
TGA 77, 88
thermal processing 49
thermo-gravimetric analysis 88
thixotropy 163
three-stage process 51
titration 87, 88
transmission electron microscopy 80
triple-layer silicates 30
triple roll mill 160

U
underground mining 42

V
vaterite 23
viscosity 162
volatile matter 76, 85
W
water-soluble matter 78
wavelength-dispersive x-ray fluorescence 85
weather resistance 183
wet coatings 159
wet grinding 48
wet hiding power 163·167
wet scrub resistance 109·180
white lead 13
whiteness 64·65·174
whiteness R 66
wollastonite 139

X
X-ray diffractometry 87
X-ray fluorescence spectroscopy 82, 84, 85
XRF 82

Y
yellow hue 175
yellowness index 66
The Mission: Everything about modern fillers in a single book. Explained clearly and simply, without sacrificing scientific expertise or attention to detail, this book enables the reader to speedily gain a comprehensive overview of the working mechanisms and possible application areas of the most common fillers, including nanoscale types. Indispensable for expert formulators and those with aspirations in that direction.

The Audience: Newcomers to the field and students looking for a comprehensive overview, as well as experienced developers seeking practical details which they can immediately implement in their daily formulations. For those who want to acquire an extensive knowledge of fillers that they can use effectively in their formulations.

The Value: Not simply a textbook for beginners, but also an invaluable, practical reference work for the experienced expert. The subject matter is clearly organized and structured for quick and easy access to all relevant information. A special plus is the large number of figures and tables for illustrating the properties and applications of the fillers.