THE NEW TECHNICAL BOOK FROM THE EUROPEAN COATINGS LIBRARY COLLECTION!

Closing date for advertisements: May 4, 2021

Advertising Contacts

Vincenz Network
Patricia Lüpertz
T +49 511 9910-249
patricia.luepertz@vincentz.net
Anette Pennartz
T +49 511 9910-240
anette.pennartz@vincentz.net

International Sales Representatives

BeNeLux
Jacqueline Poppe
Beech BP
T +31 547 271071
jacqueline@beechbp.nl

France
Melanie Villard
DEF & Communication
T +33 1 47307180
mvillard@defcommunication.com

United Kingdom/USA/Canada
Dave Weidner
Blue World Partners
T +1 603 556 7479
info@blueworldpartners.com

RESINS FOR WATER-BORNE COATINGS

Jaap Akkerman + Dirk Mestach et al.
Table of Contents

1 A brief introduction
2 Water-borne resins and coatings: history, markets and definitions
 2.1 History of water-borne coatings and resins
 2.1.1 The past
 2.1.2 The present: from polymer science to resins
 2.1.3 The present: water-borne resins and coatings
 2.1.4 The future
 2.2 Markets and applications
 2.2.1 The market for water-borne coating resins
 2.2.2 Coatings market definitions
 2.3 Definitions
 2.3.1 Definitions of water-borne paints
 2.3.2 Definitions of water-borne resins
 2.3.3 Volatile Organic compounds
 2.3.4 Polymer dispersion terminologies
3 Polymer dispersions and emulsions
 3.1 General introduction
 3.2 Preparation of polymer dispersions
 3.2.1 Stability of polymer dispersions
 3.2.2 Free radical (co)polymerization mechanism
 3.2.3 Free radical emulsion (co)polymerization
 3.2.4 Raw materials: emulsion polymerization
 3.2.5 Process variation and morphology control
 3.2.6 Crosslinking of polymer dispersions
 3.2.7 Polymer dispersions made by other processes
 3.3 Parameters and mechanisms of polymer dispersions
 3.3.1 Particle size and particle morphology
 3.3.2 Glass transition temperature
 3.3.3 Film formation – coalescence
 3.3.4 Minimum film formation temperature (MFFT)
 3.3.5 Coalescing aids, cosolvents and plasticizers
 3.4 Stability of polymer dispersions and coatings
 3.4.1 Paint formulation with polymer dispersion resins
 3.4.2 Styrene copolymer dispersions
 3.4.3 Styrene acrylic dispersions
 3.4.4 Pure acrylic dispersions
 3.4.5 Poly vinyl acetate and vinyl acetate copolymer dispersions
 3.4.6 Poly butadiene dispersions
 3.4.7 Cationic polymer dispersions
 3.5 References
4 Alkyd resins
 4.1 Introduction
 4.2 Water-soluble alkyds
 4.2.1 Molecular structure of the resins
 4.2.2 Cosolvents
 4.2.3 Applications
 4.2.4 Examples
 4.3 Externally emulsified alkyds
 4.3.1 Molecular structure of the resins
 4.3.2 Anionic and nonionic modification
 4.3.3 Surfactants
 4.3.4 Technology
 4.3.5 Emulsification in theory and practice
 4.3.6 Applications
 4.3.7 Examples
 4.4 Internally emulsified alkyds
 4.4.1 Anionic and nonionic modification
 4.4.2 Molecular structure
 4.4.3 Applications
 4.4.4 Examples
5 Epoxy Resins
 5.1 Background
 5.2 Basics
 5.3 Reaction and Cross-linking
 5.4 Epoxy-Dispersions
 5.5 Application
 5.6 Trends
 5.6.1 Epoxy Hybrids
 5.6.2 BPA substitutes, Biobased Epoxy Resins
 5.7 Polymerization mechanism
 5.7.1 Internal emulsified Epoxy dispersions
 5.7.2 Cosolvents
 5.7.3 Processes of polymerization
 5.7.4 Surfactants
 5.8 Rheology of polymer dispersions and paints
 5.8.1 Glide formulations and performance
 5.8.2 Coating applications and formulations of polymer dispersions
 5.8.3 Coating applications and formulations of polymer dispersions
 5.8.4 Stabilization mechanism
 5.8.5 Paint formulation with polymer dispersion resins
 5.8.6 Styrene copolymer dispersions
 5.8.7 Styrene acrylic dispersions
 5.8.8 Pure acrylic dispersions
 5.8.9 Poly vinyl acetate and vinyl acetate copolymer dispersions
 5.8.10 Poly butadiene dispersions
 5.8.11 Cationic polymer dispersions
 5.9 Cationic polymer dispersions
 5.9.1 Molecular structure
 5.9.2 Anionic and nonionic modification
 5.9.3 Surfactants
 5.9.4 Technology
 5.9.5 Emulsification in theory and practice
 5.9.6 Applications
 5.9.7 Examples
 5.9.8 Internally emulsified alkyds
 5.9.9 Molecular structure of the resins
 5.9.10 Anionic and nonionic modification
 5.9.11 Molecular structure
 5.9.12 Applications
 5.9.13 Examples
 5.10 Coating applications of water-borne two component polyurethane
 5.11 Water-borne polyols and polyisocyanates for two component polyurethane coatings
 5.12 Coating applications of water-borne two component polyurethane
 5.13 Paint formulation with acrylic emulsion resins
 5.14 Paint formulation with polyester emulsions
 5.15 References
6 Water-borne polyurethane coatings
 6.1 Introduction
 6.2 One component polyurethane coatings
 6.2.1 Synthesis of polyurethane dispersions
 6.2.2 Raw materials used for production of polyurethane dispersions
 6.2.3 Production process
 6.2.4 PUD producers
 6.2.5 Applications of polyurethane dispersions and coating formulations
 6.2.6 Automotive OEM applications
 6.2.7 Industrial wood applications
 6.2.8 Architectural: deco/DIY
 6.2.9 Automotive plastics
 6.2.10 Teletronics – industrial plastics
 6.2.11 Vehicle refinishing
 6.2.12 Metal
 6.3 Two-component polyurethane coatings
 6.3.1 Water-borne polyols and polyisocyanates for two component polyurethane coatings
 6.3.2 Coating applications of water-borne two component polyurethane
 6.3.3 Paint formulation with acrylic emulsion resins
 6.3.4 Paint formulation with polyester emulsions
 6.3.5 References
7 Silicone resins
 7.1 Silicone chemistry
 7.1.1 Structure of silicones
 7.1.2 Silicone resins
 7.1.3 Silanes, siloxanes and silicones
 7.1.4 Silicone resin-based binders for coatings
 7.1.5 Silicone resin emulsions
 7.1.6 Performance profile of a binder
 7.2 Other silicone ingredients for water-borne coatings
 7.2.1 Hydrophobic primers
 7.2.2 Hydrophobic additives
 7.2.3 Special effect additives
 7.2.4 Silicone-based pH adjuster
 7.3 Silicone resin emulsion paints and plasters
 7.3.1 Definition of silicone resin emulsion paints and plasters
 7.4 References
8 Water-borne alkali silicates
 8.1 Historical background
 8.2 Chemical compositions
 8.3 Molecular structure of water-borne alkali silicates
 8.4 Production of alkali silicates
 8.5 Water-borne silicates
 8.5.1 Classification according to EU regulations
 8.5.2 Sodium silicates
 8.5.3 Potassium silicates
 8.5.4 Lithium silicates
 8.6 Curing or hardening processes of alkali silicates
 8.7 Water-borne alkali silicate containing surface coatings
 8.7.1 Silicate emulsion paint
 8.7.2 Silicate emulsion coatings for interior use
 8.8 Sol-silicate paint
 8.9 Organo-silicate paint
 8.10 Various applications of soluble silicates
 8.11 References
9 Water-borne amino resins as hardeners
 9.1 Structure of amino resins
 9.2 Types and properties of amino resins
 9.3 Combination partners for amino resins
 9.4 Water-borne stoving enamels based on amino resins
 9.5 Formaldehyde free melamine-based resins
 9.6 Literature
 9.7 Conclusion / comparison
 9.8 Literature
10 REACH and other regulations
 10.1 Legislation on volatile organic compounds
 10.2 Legislation on chemical substances ‘REACH’ and ‘CLP’
Yes, we would like to present our company in the new technical book

RESINS FOR WATER-BORNE COATINGS
Jaap Akkerman + Dirk Mestach et al.

and order the following advertisement:

- **1/1 page**
 - 120 mm x 180 mm (type area)
 - or 155 mm x 225 mm (bleed size)

- **Position in the front section of the book:**
 - between masthead, foreword, table of contents
 - 4c € 1,990.00

- **Position in the inner section of the book:**
 - any requested position/chapter possible!
 - 4c € 2,390.00
 - in chapter (see Table of Contents): ______

- **1/2 page horizontal**
 - 120 mm x 85 mm (type area)
 - or 155 mm x 110 mm (bleed size)

- **1/2 page vertical**
 - 57 mm x 180 mm (type area)
 - or 77 mm x 225 mm (bleed size)

- **Bookmark**
 - max. 60 mm x 120 mm
 - or max. 70 mm x 105 mm
 - excl. production € 2,390.00
 - incl. production* € 2,890.00
 - *excl. artwork
 - (to be supplied by advertiser)

Closing date for advertisements: MAY 4, 2021

All rates subject to VAT where applicable.

Ad material (PDF, min. 300 dpi) due: MAY 11, 2021
via E-mail to: kristijan.lugaric@vincentz.net